Cargando…

Metagenomics and its connection to microbial community organization

Microbes dominate most global biogeochemical cycles, and microbial metagenomics (studying the collective microbial genomes) provides invaluable new insights into microbial systems, independent of cultivation. Metagenomic approaches targeting specific genes, e.g. small subunit (ssu) ribosomal RNA (rR...

Descripción completa

Detalles Bibliográficos
Autor principal: Fuhrman, Jed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Faculty of 1000 Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410722/
https://www.ncbi.nlm.nih.gov/pubmed/22912649
http://dx.doi.org/10.3410/B4-15
Descripción
Sumario:Microbes dominate most global biogeochemical cycles, and microbial metagenomics (studying the collective microbial genomes) provides invaluable new insights into microbial systems, independent of cultivation. Metagenomic approaches targeting specific genes, e.g. small subunit (ssu) ribosomal RNA (rRNA), can be used to investigate microbial community organization by efficiently showing which taxa of organisms are present, while shotgun approaches show all genes and can indicate what functions the organisms are capable of. But collecting and organizing comprehensive shotgun data is extremely challenging and costly, and, in theory, predicting functionalities from microbial identities alone would save immense effort. However, we don’t yet know to what extent such predictions are applicable.