Cargando…
Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis
Members of the fungal genus Fonsecaea causing human chromoblastomycosis show substantial geographic structuring. Genetic identity of clinical and environmental strains suggests transmission from plant debris, while the evolutionary processes that have led to spatially separated populations have rema...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410912/ https://www.ncbi.nlm.nih.gov/pubmed/22876287 http://dx.doi.org/10.1371/journal.pone.0041512 |
_version_ | 1782239785378643968 |
---|---|
author | Sun, Jiufeng Najafzadeh, Mohammed J. Gerrits van den Ende, Albertus H. G. Vicente, Vania A. Feng, Peiying Xi, Liyan De Hoog, Gerrit S. |
author_facet | Sun, Jiufeng Najafzadeh, Mohammed J. Gerrits van den Ende, Albertus H. G. Vicente, Vania A. Feng, Peiying Xi, Liyan De Hoog, Gerrit S. |
author_sort | Sun, Jiufeng |
collection | PubMed |
description | Members of the fungal genus Fonsecaea causing human chromoblastomycosis show substantial geographic structuring. Genetic identity of clinical and environmental strains suggests transmission from plant debris, while the evolutionary processes that have led to spatially separated populations have remained unexplained. Sequences of ITS, BT2, ACT1, Cdc42, Lac and HmgA were analyzed, either by direct sequencing or by cloning. Thirty-seven clinical and environmental Fonsecaea strains from Central and South America, Asia, Africa and Europe were sequenced and possible recombination events were calculated. Phylogenetic trees of Cdc42, Lac and HmgA were statistically supported, but ITS, BT2 and ACT1 trees were not. The Standardized Index of Association (I(A) (S)) did not detect recombination (I(A) (S) = 0.4778), neither did the Phi-test for separate genes. In Fonsecaea nubica non-synonymous mutations causing functional changes were observed in Lac gene, even though no selection pressures were detected with the neutrality test (Tajima D test, p>0.05). Genetic differentiation of populations for each gene showed separation of American, African and Asian populations. Strains of clinical vs. environmental origin showed genetic distances that were comparable or lower than found in geographic differentiation. In conclusion, here we demonstrated clonality of sibling species using multilocus data, geographic structuring of populations, and a low functional and structural selective constraint during evolution of the genus Fonsecaea. |
format | Online Article Text |
id | pubmed-3410912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34109122012-08-08 Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis Sun, Jiufeng Najafzadeh, Mohammed J. Gerrits van den Ende, Albertus H. G. Vicente, Vania A. Feng, Peiying Xi, Liyan De Hoog, Gerrit S. PLoS One Research Article Members of the fungal genus Fonsecaea causing human chromoblastomycosis show substantial geographic structuring. Genetic identity of clinical and environmental strains suggests transmission from plant debris, while the evolutionary processes that have led to spatially separated populations have remained unexplained. Sequences of ITS, BT2, ACT1, Cdc42, Lac and HmgA were analyzed, either by direct sequencing or by cloning. Thirty-seven clinical and environmental Fonsecaea strains from Central and South America, Asia, Africa and Europe were sequenced and possible recombination events were calculated. Phylogenetic trees of Cdc42, Lac and HmgA were statistically supported, but ITS, BT2 and ACT1 trees were not. The Standardized Index of Association (I(A) (S)) did not detect recombination (I(A) (S) = 0.4778), neither did the Phi-test for separate genes. In Fonsecaea nubica non-synonymous mutations causing functional changes were observed in Lac gene, even though no selection pressures were detected with the neutrality test (Tajima D test, p>0.05). Genetic differentiation of populations for each gene showed separation of American, African and Asian populations. Strains of clinical vs. environmental origin showed genetic distances that were comparable or lower than found in geographic differentiation. In conclusion, here we demonstrated clonality of sibling species using multilocus data, geographic structuring of populations, and a low functional and structural selective constraint during evolution of the genus Fonsecaea. Public Library of Science 2012-08-02 /pmc/articles/PMC3410912/ /pubmed/22876287 http://dx.doi.org/10.1371/journal.pone.0041512 Text en © 2012 Sun et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sun, Jiufeng Najafzadeh, Mohammed J. Gerrits van den Ende, Albertus H. G. Vicente, Vania A. Feng, Peiying Xi, Liyan De Hoog, Gerrit S. Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title | Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title_full | Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title_fullStr | Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title_full_unstemmed | Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title_short | Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis |
title_sort | molecular characterization of pathogenic members of the genus fonsecaea using multilocus analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410912/ https://www.ncbi.nlm.nih.gov/pubmed/22876287 http://dx.doi.org/10.1371/journal.pone.0041512 |
work_keys_str_mv | AT sunjiufeng molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT najafzadehmohammedj molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT gerritsvandenendealbertushg molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT vicentevaniaa molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT fengpeiying molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT xiliyan molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis AT dehooggerrits molecularcharacterizationofpathogenicmembersofthegenusfonsecaeausingmultilocusanalysis |