Cargando…

Genetic Interactions Between Arabidopsis DET1 and UVH6 During Development and Abiotic Stress Response

Plants must adapt to a variety of abiotic inputs, including visible light, ultraviolet (UV) light, and heat. In Arabidopsis thaliana, DE-ETIOLATED 1 (DET1) plays a role in visible light signaling, UV tolerance, and development. UV-HYPERSENSITIVE 6 (UVH6) mutants are UV and heat sensitive, as well as...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Esther, Ly, Valentina, Hatherell, Avril, Schroeder, Dana F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411247/
https://www.ncbi.nlm.nih.gov/pubmed/22908040
http://dx.doi.org/10.1534/g3.112.003368
Descripción
Sumario:Plants must adapt to a variety of abiotic inputs, including visible light, ultraviolet (UV) light, and heat. In Arabidopsis thaliana, DE-ETIOLATED 1 (DET1) plays a role in visible light signaling, UV tolerance, and development. UV-HYPERSENSITIVE 6 (UVH6) mutants are UV and heat sensitive, as well as dwarf and pale, like det1. In this study, we examine the genetic interactions between these two genes. In dark-grown seedlings, uvh6 exhibits a weak de-etiolated phenotype but does not affect the stronger de-etiolated phenotype of det1. In the light, det1 is epistatic to uvh6 with regard to chlorophyll level, but their effect on all size parameters is additive and therefore independent. With regard to UV tolerance, det1 UV resistance is epistatic to uvh6 UV sensitivity. In heat stress experiments, det1 enhances heat-induced tissue damage in the uvh6 background but suppresses heat-induced growth inhibition. Thus, det1 acts epistatically to uvh6 with respect to de-etiolation, chlorophyll level, UV tolerance, and heat-induced growth inhibition, whereas det1 and uvh6 act additively to regulate plant size and heat-induced cell death. These data provide insight into interplay between light and heat signaling.