Cargando…
Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model
Development and function of mesodiencephalic dopaminergic (mdDA) neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADH...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411649/ https://www.ncbi.nlm.nih.gov/pubmed/22870339 http://dx.doi.org/10.1371/journal.pone.0042641 |
_version_ | 1782239864496848896 |
---|---|
author | Smidt, Marten P. von Oerthel, Lars Hoekstra, Elisa J. Schellevis, Raymond D. Hoekman, Marco F. M. |
author_facet | Smidt, Marten P. von Oerthel, Lars Hoekstra, Elisa J. Schellevis, Raymond D. Hoekman, Marco F. M. |
author_sort | Smidt, Marten P. |
collection | PubMed |
description | Development and function of mesodiencephalic dopaminergic (mdDA) neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADHD). The understanding of the molecular processes that lead to normal development and function of mdDA neurons has provided insight in the pathology and provided critical information on new treatment paradigms. In order to be able to study specific genetic ablation in mdDA neurons a new tools was developed that drives Cre-recombinase under the control of the Pitx3 locus. The Pitx3 gene is well known for its specific expression in mdDA neurons and is present at the onset of terminal differentiation. Analysis of newly generated Pitx3-Cre knock-in mice shows that Cre expression, measured through the activation of eYfp by removal of a “Stop” signal (LoxP-Stop-LoxP-eYfp reporter mouse), is present at the onset of terminal differentiation and mimics closely the native Pitx3 expression domain. In conclusion, we present here a new Cre-driver mouse model to be used in the restricted ablation of interesting genes in mdDA neurons in order to improve our understanding of the underlying molecular programming. |
format | Online Article Text |
id | pubmed-3411649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34116492012-08-06 Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model Smidt, Marten P. von Oerthel, Lars Hoekstra, Elisa J. Schellevis, Raymond D. Hoekman, Marco F. M. PLoS One Research Article Development and function of mesodiencephalic dopaminergic (mdDA) neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADHD). The understanding of the molecular processes that lead to normal development and function of mdDA neurons has provided insight in the pathology and provided critical information on new treatment paradigms. In order to be able to study specific genetic ablation in mdDA neurons a new tools was developed that drives Cre-recombinase under the control of the Pitx3 locus. The Pitx3 gene is well known for its specific expression in mdDA neurons and is present at the onset of terminal differentiation. Analysis of newly generated Pitx3-Cre knock-in mice shows that Cre expression, measured through the activation of eYfp by removal of a “Stop” signal (LoxP-Stop-LoxP-eYfp reporter mouse), is present at the onset of terminal differentiation and mimics closely the native Pitx3 expression domain. In conclusion, we present here a new Cre-driver mouse model to be used in the restricted ablation of interesting genes in mdDA neurons in order to improve our understanding of the underlying molecular programming. Public Library of Science 2012-08-01 /pmc/articles/PMC3411649/ /pubmed/22870339 http://dx.doi.org/10.1371/journal.pone.0042641 Text en © 2012 Smidt et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Smidt, Marten P. von Oerthel, Lars Hoekstra, Elisa J. Schellevis, Raymond D. Hoekman, Marco F. M. Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title | Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title_full | Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title_fullStr | Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title_full_unstemmed | Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title_short | Spatial and Temporal Lineage Analysis of a Pitx3-Driven Cre-Recombinase Knock-In Mouse Model |
title_sort | spatial and temporal lineage analysis of a pitx3-driven cre-recombinase knock-in mouse model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411649/ https://www.ncbi.nlm.nih.gov/pubmed/22870339 http://dx.doi.org/10.1371/journal.pone.0042641 |
work_keys_str_mv | AT smidtmartenp spatialandtemporallineageanalysisofapitx3drivencrerecombinaseknockinmousemodel AT vonoerthellars spatialandtemporallineageanalysisofapitx3drivencrerecombinaseknockinmousemodel AT hoekstraelisaj spatialandtemporallineageanalysisofapitx3drivencrerecombinaseknockinmousemodel AT schellevisraymondd spatialandtemporallineageanalysisofapitx3drivencrerecombinaseknockinmousemodel AT hoekmanmarcofm spatialandtemporallineageanalysisofapitx3drivencrerecombinaseknockinmousemodel |