Cargando…

Translation Inhibitors Induce Formation of Cholesterol Ester-Rich Lipid Droplets

Lipid droplets (LDs) in non-adipocytes contain triglycerides (TG) and cholesterol esters (CE) in variable ratios. TG-rich LDs are generated when unsaturated fatty acids are administered, but the conditions that induce CE-rich LD formation are less well characterized. In the present study, we found t...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Michitaka, Ohsaki, Yuki, Tatematsu, Tsuyako, Shinohara, Yuki, Maeda, Takashi, Cheng, Jinglei, Fujimoto, Toyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411751/
https://www.ncbi.nlm.nih.gov/pubmed/22879956
http://dx.doi.org/10.1371/journal.pone.0042379
Descripción
Sumario:Lipid droplets (LDs) in non-adipocytes contain triglycerides (TG) and cholesterol esters (CE) in variable ratios. TG-rich LDs are generated when unsaturated fatty acids are administered, but the conditions that induce CE-rich LD formation are less well characterized. In the present study, we found that protein translation inhibitors such as cycloheximide (CHX) induced generation of CE-rich LDs and that TIP47 (perilipin 3) was recruited to the LDs, although the expression of this protein was reduced drastically. Electron microscopy revealed that LDs formed in CHX-treated cells possess a distinct electron-dense rim that is not found in TG-rich LDs, whose formation is induced by oleic acid. CHX treatment caused upregulation of mTORC1, but the CHX-induced increase in CE-rich LDs occurred even when rapamycin or Torin1 was given along with CHX. Moreover, the increase in CE was seen in both wild-type and autophagy-deficient Atg5-null mouse embryonic fibroblasts, indicating that mTORC1 activation and suppression of autophagy are not necessary to induce the observed phenomenon. The results showed that translation inhibitors cause a significant change in the lipid ester composition of LDs by a mechanism independent of mTORC1 signaling and autophagy.