Cargando…
Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme
When biological or physiological variables change over time, we are often interested in making predictions either of future measurements or of the time taken to reach some threshold value. On the basis of longitudinal data for multiple individuals, we develop Bayesian hierarchical models for making...
Autores principales: | Sweeting, M J, Thompson, S G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412214/ https://www.ncbi.nlm.nih.gov/pubmed/22879705 http://dx.doi.org/10.1111/j.1467-985X.2011.01005.x |
Ejemplares similares
-
Using predictions from a joint model for longitudinal and survival data to inform the optimal time of intervention in an abdominal aortic aneurysm screening programme
por: Sweeting, Michael J.
Publicado: (2017) -
Cost-effectiveness of the National Health Service abdominal aortic aneurysm screening programme in England
por: Glover, M J, et al.
Publicado: (2014) -
Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
por: Sweeting, Michael J, et al.
Publicado: (2011) -
The occurrence of interval cancers in the Nijmegen screening programme.
por: Peeters, P. H., et al.
Publicado: (1989) -
Monitoring radiographic data within the West Midlands National Health Service Breast Screening Programme
por: Baker, J, et al.
Publicado: (2004)