Cargando…
Combining Multiple Imputation and Inverse-Probability Weighting
SUMMARY: Two approaches commonly used to deal with missing data are multiple imputation (MI) and inverse-probability weighting (IPW). IPW is also used to adjust for unequal sampling fractions. MI is generally more efficient than IPW but more complex. Whereas IPW requires only a model for the probabi...
Autores principales: | Seaman, Shaun R, White, Ian R, Copas, Andrew J, Li, Leah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Inc
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412287/ https://www.ncbi.nlm.nih.gov/pubmed/22050039 http://dx.doi.org/10.1111/j.1541-0420.2011.01666.x |
Ejemplares similares
-
Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models
por: Yiu, Sean, et al.
Publicado: (2020) -
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Causal Mediation Analysis with Multiple Mediators
por: Daniel, R M, et al.
Publicado: (2015) -
Confidence bands for multiplicative hazards models: Flexible resampling approaches
por: Dobler, Dennis, et al.
Publicado: (2019) -
Improved methods for estimating abundance and related demographic parameters from mark‐resight data
por: McClintock, Brett T., et al.
Publicado: (2019)