Cargando…

Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan

BACKGROUND: Global prevalence of Hepatitis C Virus (HCV) infection corresponds to about 130 million HCV positive patients worldwide. The only drug that effectively reduces viral load is interferon-α (IFN-α) and currently combination of IFN and ribavirin is the choice for treatment. OBJECTIVES: The p...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanwal, Sobia, Mahmood, Tariq
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Kowsar 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412557/
https://www.ncbi.nlm.nih.gov/pubmed/22879830
http://dx.doi.org/10.5812/hepatmon.6184
_version_ 1782239961774292992
author Kanwal, Sobia
Mahmood, Tariq
author_facet Kanwal, Sobia
Mahmood, Tariq
author_sort Kanwal, Sobia
collection PubMed
description BACKGROUND: Global prevalence of Hepatitis C Virus (HCV) infection corresponds to about 130 million HCV positive patients worldwide. The only drug that effectively reduces viral load is interferon-α (IFN-α) and currently combination of IFN and ribavirin is the choice for treatment. OBJECTIVES: The present study is aimed to resolve the genotypes based on core gene that might affect the response to interferon therapy. Furthermore an attempt was made to propose a powerful therapeutic approach by designing the siRNA from sequences of the same patients who remain resistant to IFN in this study. PATIENTS AND METHODS: To achieve the objectives, a sequence analysis was performed in five HCV ELISA positive subjects who have completed IFN treatment. Neighbor Joining (NJ) method was used to study the evolutionary relationship. Atomic models were predicted using online software PROCHECK and i- TASSER. RESULTS: Two new genotypes were reported for the first time namely 4a from suburban region of Rawalpindi and 6e from all over the Pakistan. According to Ramachandran plot, satisfactory atomic model was considered useful for further studies, i.e. to calculate HCV genotypes conservation at structural level, to find out critical binding sites for drug designing, or to silence those binding sites by using appropriate siRNA. Single siRNA can be used to inhibit HCV RNA synthesis against genotype 3 and 4, as the predicted siRNA were originated from the same domain in studied HCV core region in both genotypes. CONCLUSIONS: We can conclude that any change or mutation in core region might be the cause of HCV strains to resist against IFN therapy. Therefore, further understanding of the complex mechanism involved in disrupting viral response to therapy would facilitate the development of more effective therapeutic regimens. Additionally, a single designed siRNA can be used as an alternative for current therapy against more than one resistant HCV genotypes.
format Online
Article
Text
id pubmed-3412557
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Kowsar
record_format MEDLINE/PubMed
spelling pubmed-34125572012-08-09 Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan Kanwal, Sobia Mahmood, Tariq Hepat Mon Original Article BACKGROUND: Global prevalence of Hepatitis C Virus (HCV) infection corresponds to about 130 million HCV positive patients worldwide. The only drug that effectively reduces viral load is interferon-α (IFN-α) and currently combination of IFN and ribavirin is the choice for treatment. OBJECTIVES: The present study is aimed to resolve the genotypes based on core gene that might affect the response to interferon therapy. Furthermore an attempt was made to propose a powerful therapeutic approach by designing the siRNA from sequences of the same patients who remain resistant to IFN in this study. PATIENTS AND METHODS: To achieve the objectives, a sequence analysis was performed in five HCV ELISA positive subjects who have completed IFN treatment. Neighbor Joining (NJ) method was used to study the evolutionary relationship. Atomic models were predicted using online software PROCHECK and i- TASSER. RESULTS: Two new genotypes were reported for the first time namely 4a from suburban region of Rawalpindi and 6e from all over the Pakistan. According to Ramachandran plot, satisfactory atomic model was considered useful for further studies, i.e. to calculate HCV genotypes conservation at structural level, to find out critical binding sites for drug designing, or to silence those binding sites by using appropriate siRNA. Single siRNA can be used to inhibit HCV RNA synthesis against genotype 3 and 4, as the predicted siRNA were originated from the same domain in studied HCV core region in both genotypes. CONCLUSIONS: We can conclude that any change or mutation in core region might be the cause of HCV strains to resist against IFN therapy. Therefore, further understanding of the complex mechanism involved in disrupting viral response to therapy would facilitate the development of more effective therapeutic regimens. Additionally, a single designed siRNA can be used as an alternative for current therapy against more than one resistant HCV genotypes. Kowsar 2012-06 2012-06-30 /pmc/articles/PMC3412557/ /pubmed/22879830 http://dx.doi.org/10.5812/hepatmon.6184 Text en Copyright © 2012, Kowsar Corp. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Kanwal, Sobia
Mahmood, Tariq
Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title_full Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title_fullStr Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title_full_unstemmed Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title_short Hepatitis C Viral Heterogeneity Based on Core Gene and an Attempt to Design Small Interfering RNA Against Strains Resistant to Interferon in Rawalpindi, Pakistan
title_sort hepatitis c viral heterogeneity based on core gene and an attempt to design small interfering rna against strains resistant to interferon in rawalpindi, pakistan
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412557/
https://www.ncbi.nlm.nih.gov/pubmed/22879830
http://dx.doi.org/10.5812/hepatmon.6184
work_keys_str_mv AT kanwalsobia hepatitiscviralheterogeneitybasedoncoregeneandanattempttodesignsmallinterferingrnaagainststrainsresistanttointerferoninrawalpindipakistan
AT mahmoodtariq hepatitiscviralheterogeneitybasedoncoregeneandanattempttodesignsmallinterferingrnaagainststrainsresistanttointerferoninrawalpindipakistan