Cargando…
A Herpes Simplex Virus 1 (McKrae) Mutant Lacking the Glycoprotein K Gene Is Unable To Infect via Neuronal Axons and Egress from Neuronal Cell Bodies
We have shown that the herpes simplex virus 1 (HSV-1) gK gene is essential for efficient replication and spread in the corneal epithelium and trigeminal ganglion neuroinvasion in mice (A. T. David, A. Baghian, T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, Curr. Eye Res. 33:455–467, 2008). To...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413403/ https://www.ncbi.nlm.nih.gov/pubmed/22829677 http://dx.doi.org/10.1128/mBio.00144-12 |
Sumario: | We have shown that the herpes simplex virus 1 (HSV-1) gK gene is essential for efficient replication and spread in the corneal epithelium and trigeminal ganglion neuroinvasion in mice (A. T. David, A. Baghian, T. P. Foster, V. N. Chouljenko, and K. G. Kousoulas, Curr. Eye Res. 33:455–467, 2008). To further investigate the role of gK in neuronal infection, we utilized a microfluidic chamber system separating neuronal cell bodies and axonal termini. HSV-1 (McKrae) engineered virus constitutively expressing enhanced green fluorescence protein (GFP) was efficiently transmitted in both a retrograde and an anterograde manner. These results were corroborated by expression of virion structural proteins in either chamber, as well as detection of viral genomes and infectious viruses. In contrast, efficient infection of either chamber with a gK-null virus did not result in infection of the apposed chamber. These results show that gK is an important determinant in virion axonal infection. Moreover, the inability of the gK-null virus to be transmitted in an anterograde manner suggests that virions acquire cytoplasmic envelopes prior to entering axons. |
---|