Cargando…

Mechanisms for redox actions of nicotine and glutathione in cell culture, relevant to periodontitis

The oxidative effect of nicotine was investigated using androgen biomarkers of redox status and wound healing in fibroblasts; using the antioxidant glutathione for confirmation of responses. Cultures of human gingival (HGF) and periosteal fibroblasts (HPF) were incubated with substrates 14C-testoste...

Descripción completa

Detalles Bibliográficos
Autores principales: Tinti, Federico, Soory, Mena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413880/
https://www.ncbi.nlm.nih.gov/pubmed/22876341
http://dx.doi.org/10.1038/srep00566
Descripción
Sumario:The oxidative effect of nicotine was investigated using androgen biomarkers of redox status and wound healing in fibroblasts; using the antioxidant glutathione for confirmation of responses. Cultures of human gingival (HGF) and periosteal fibroblasts (HPF) were incubated with substrates 14C-testosterone/14C-4-androstenedione in the presence or absence of serial concentrations of nicotine (N(100-500)), glutathione (G(1–5)) and their combinations, in medium. At 24 h the medium was solvent extracted for metabolites, separated by TLC and quantified using radioisotope scanning. Nicotine caused significant inhibition in yields of the physiologically active metabolite 5α-dihydrotestosterone (DHT) in HGF and HPF, overcome to varying degrees by the anti-oxidant glutathione (n = 6; p<0.01, one way ANOVA); this is suggestive of moderation of an oxidative mechanism induced by nicotine. Down-regulation of 5α-reductase activity by nicotine resulting in reduced yields of DHT was overcome by glutathione. Overcoming oxidative stress in a redox environment is applicable to treatment outcome.