Cargando…
Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells
BACKGROUND: Osteosarcoma is a bone tumor that often affects children and young adults. Although a combination of surgery and chemotherapy has improved the survival rate in the past decades, local recurrence and metastases still develop in 40% of patients. A definite therapy is yet to be determined f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414746/ https://www.ncbi.nlm.nih.gov/pubmed/22429849 http://dx.doi.org/10.1186/1471-2407-12-93 |
Sumario: | BACKGROUND: Osteosarcoma is a bone tumor that often affects children and young adults. Although a combination of surgery and chemotherapy has improved the survival rate in the past decades, local recurrence and metastases still develop in 40% of patients. A definite therapy is yet to be determined for osteosarcoma. Anti- tumor compound and a metabolite of estrogen, 2-methoxyestradiol (2-ME) induces cell death in osteosarcoma cells. In this report, we have investigated whether interferon (IFN) pathway is involved in 2-ME-induced anti-tumor effects in osteosarcoma cells. METHODS: 2-ME effects on IFN mRNA levels were determined by Real time PCR analysis. Transient transfections followed by reporter assays were used for investigating 2-ME effects on IFN-pathway. Western blot analyses were used to measure protein and phosphorylation levels of IFN-regulated eukaryotic initiation factor-2 alpha (eIF-2α). RESULTS: 2-ME regulates IFN and IFN-mediated effects in osteosarcoma cells. 2 -ME induces IFN gene activity and expression in osteosarcoma cells. 2-ME treatment induced IFN-stimulated response element (ISRE) sequence-dependent transcription and gamma-activated sequence (GAS)-dependent transcription in several osteosarcoma cells. Whereas, 2-ME did not affect IFN gene and IFN pathways in normal primary human osteoblasts (HOB). 2-ME treatment increased the phosphorylation of eIF-2α in osteosarcoma cells. Furthermore, analysis of osteosarcoma tissues shows that the levels of phosphorylated form of eIF-2α are decreased in tumor compared to normal controls. CONCLUSIONS: 2-ME treatment triggers the induction and activity of IFN and IFN pathway genes in 2-ME-sensitive osteosarcoma tumor cells but not in 2-ME-resistant normal osteoblasts. In addition, IFN-signaling is inhibited in osteosarcoma patients. Thus, IFN pathways play a role in osteosarcoma and in 2-ME-mediated anti-proliferative effects, and therefore targeted induction of IFN signaling could lead to effective treatment strategies in the control of osteosarcoma. |
---|