Cargando…

The effects of low dose X-irradiation on osteoblastic MC3T3-E1 cells in vitro

BACKGROUND: It has been indicated that moderate or high dose of X-irradiation could delay fracture union and cause osteoradionecrosis, in part, mediated by its effect on proliferation and differentiation of osteoblasts. However, whether low dose irradiation (LDI) has similar roles on osteoblasts is...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wei, Xu, Lan, Chen, Ming, Mao, Yong Tao, Xie, Zong Gang, Wu, Shi Liang, Dong, Qi Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414775/
https://www.ncbi.nlm.nih.gov/pubmed/22682502
http://dx.doi.org/10.1186/1471-2474-13-94
Descripción
Sumario:BACKGROUND: It has been indicated that moderate or high dose of X-irradiation could delay fracture union and cause osteoradionecrosis, in part, mediated by its effect on proliferation and differentiation of osteoblasts. However, whether low dose irradiation (LDI) has similar roles on osteoblasts is still unknown. In this study, we investigated whether and to what extent LDI could affect the proliferation, differentiation and mineralization of osteoblasts in vitro. METHODS: The MC3T3-E1 cells were exposed to single dose of X-irradiation with 0, 0.1, 0.5, 1.0 Gy respectively. Cell proliferation, apoptosis, alkaline phosphatase (ALP) activity, and mineralization was evaluated by methylthiazoletetrazolium (MTT) and bromodeoxyuridine (BrdU) assay, flow cytometry, ALP viability kit and von Kossa staining, respectively. Osteocalcin (OCN) and core-binding factor α1 (Cbfα1) expressions were measured by real time-PCR and western blot, respectively. RESULTS: The proliferation of the cells exposed to 2.0 Gy was significantly lower than those exposed to ≤1.0 Gy (p < 0.05) from Day 4 to Day 8, measured by MTT assay and BrdU incorporation. For cells exposed to ≤1.0 Gy, increasing dosages of X-irradiation had no significant effect on cell proliferation and apoptosis. Importantly, LDI of 0.5 and 1 Gy increased ALP activities and mineralized nodules of MC3T3-E1 cells. In addition, mRNA and protein expressions of OCN and Cbfα1 were also markedly increased after treatment with LDI at 0.5 and 1 Gy. CONCLUSIONS: LDI have different effects on proliferation and differentiation of osteoblasts from those of high dose of X-irradiation, which might suggest that LDI could lead to promotion of frature healing through enhancing the differentiation and mineralization of osteoblasts.