Cargando…

Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease

BACKGROUND: Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural an...

Descripción completa

Detalles Bibliográficos
Autores principales: Puli, Lakshman, Pomeshchik, Yuriy, Olas, Katja, Malm, Tarja, Koistinaho, Jari, Tanila, Heikki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416679/
https://www.ncbi.nlm.nih.gov/pubmed/22642812
http://dx.doi.org/10.1186/1742-2094-9-105
Descripción
Sumario:BACKGROUND: Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural anti-amyloid beta antibodies and anti-inflammatory effects, hIVIG is deemed to mediate beneficial effects to patients of Alzheimer’s disease (AD). Here, we set out to explore the effects of hIVIG in a mouse model of AD. METHODS: We treated APP/PS1dE9 transgenic and wild-type mice with weekly injections of a high hIVIG dose (1 g/kg) or saline for 3 or 8 months. Treatment effect on brain amyloid pathology and microglial reactivity was assessed by ELISA, immunohistochemistry, RT-PCR, and confocal microscopy. RESULTS: We found no evidence for reduction in Aβ pathology; instead 8 months of hIVIG treatment significantly increased soluble levels of Aβ40 and Aβ42. In addition, we noticed a significant reduction in CD45 and elevation of Iba-1 markers in specific sub-populations of microglial cells. Long-term hIVIG treatment also resulted in significant suppression of TNF-α and increase in doublecortin positive adult-born neurons in the dentate gyrus. CONCLUSIONS: Our data indicate limited ability of hIVIG to impact amyloid burden but shows changes in microglia, pro-inflammatory gene expression, and neurogenic effects. Immunomodulation by hIVIG may account for its beneficial effect in AD patients.