Cargando…

GroEL1, from Chlamydia pneumoniae, Induces Vascular Adhesion Molecule 1 Expression by p37(AUF1) in Endothelial Cells and Hypercholesterolemic Rabbit

The expression of vascular adhesion molecule-1 (VCAM-1) by endothelial cells may play a major role in atherogenesis. The actual mechanisms of chlamydia pneumoniae (C. pneumoniae) relate to atherogenesis are unclear. We investigate the influence of VCAM-1 expression in the GroEL1 from C. pneumoniae-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Chun-Yao, Shih, Chun-Ming, Tsao, Nai-Wen, Chen, Yung-Hsiang, Li, Chi-Yuan, Chang, Yu-Jia, Chang, Nen-Chung, Ou, Keng-Liang, Lin, Cheng-Yen, Lin, Yi-Wen, Nien, Chih-Hao, Lin, Feng-Yen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416774/
https://www.ncbi.nlm.nih.gov/pubmed/22900050
http://dx.doi.org/10.1371/journal.pone.0042808
Descripción
Sumario:The expression of vascular adhesion molecule-1 (VCAM-1) by endothelial cells may play a major role in atherogenesis. The actual mechanisms of chlamydia pneumoniae (C. pneumoniae) relate to atherogenesis are unclear. We investigate the influence of VCAM-1 expression in the GroEL1 from C. pneumoniae-administered human coronary artery endothelial cells (HCAECs) and hypercholesterolemic rabbits. In this study, we constructed the recombinant GroEL1 from C. pneumoniae. The HCAECs/THP-1 adhesion assay, tube formation assay, western blotting, enzyme-linked immunosorbent assay, actinomycin D chase experiment, luciferase reporter assay, and immunohistochemical stainings were performed. The results show that GroEL1 increased both VCAM-1expression and THP-1 cell adhesives, and impaired tube-formation capacity in the HCAECs. GroEL1 significantly increased the VCAM-1 mRNA stability and cytosolic AU-binding factor 1 (AUF1) level. Overexpression of the p37(AUF1) significantly increased VCAM-1 gene expression in GroEL1-induced bovine aortic endothelial cells (BAECs). GroEL1 prolonged the stability of VCAM-1 mRNA by increasing both p37(AUF1) and the regulation of the 5′ untranslated region (UTR) of the VCAM-1 mRNA in BAECs. In hypercholesterolemic rabbits, GroEL1 administration enhanced fatty-streak and macrophage infiltration in atherosclerotic lesions, which may be mediated by elevated VCAM-1 expression. In conclusion, GroEL1 induces VCAM-1 expression by p37(AUF1) in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.