Cargando…

Accounting for Location Error in Kalman Filters: Integrating Animal Borne Sensor Data into Assimilation Schemes

Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or related to the Kalman filter. Typically Kalman filters a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sengupta, Aritra, Foster, Scott D., Patterson, Toby A., Bravington, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416853/
https://www.ncbi.nlm.nih.gov/pubmed/22900005
http://dx.doi.org/10.1371/journal.pone.0042093
Descripción
Sumario:Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or related to the Kalman filter. Typically Kalman filters assumes that the locations associated with observations are known with certainty. This is reasonable for typical oceanographic measurement methods. Recently, however an alternative and abundant source of data comes from the deployment of ocean sensors on marine animals. This source of data has some attractive properties: unlike traditional oceanographic collection platforms, it is relatively cheap to collect, plentiful, has multiple scientific uses and users, and samples areas of the ocean that are often difficult of costly to sample. However, inherent uncertainty in the location of the observations is a barrier to full utilisation of animal-borne sensor data in data-assimilation schemes. In this article we examine this issue and suggest a simple approximation to explicitly incorporate the location uncertainty, while staying in the scope of Kalman-filter-like methods. The approximation stems from a Taylor-series approximation to elements of the updating equation.