Cargando…
Finding low-energy conformations of lattice protein models by quantum annealing
Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy threedimensional structures is an intractable problem even in the sim...
Autores principales: | Perdomo-Ortiz, Alejandro, Dickson, Neil, Drew-Brook, Marshall, Rose, Geordie, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417777/ https://www.ncbi.nlm.nih.gov/pubmed/22891157 http://dx.doi.org/10.1038/srep00571 |
Ejemplares similares
-
Determination and correction of persistent biases in quantum annealers
por: Perdomo-Ortiz, Alejandro, et al.
Publicado: (2016) -
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
por: Häse, Florian, et al.
Publicado: (2017) -
Adiabatic Quantum Simulation of Quantum Chemistry
por: Babbush, Ryan, et al.
Publicado: (2014) -
Traffic signal optimization on a square lattice with quantum annealing
por: Inoue, Daisuke, et al.
Publicado: (2021) -
Quantum Computing Without Wavefunctions: Time-Dependent Density Functional Theory for Universal Quantum Computation
por: Tempel, David G., et al.
Publicado: (2012)