Cargando…
Laser acceleration and its future
Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417841/ https://www.ncbi.nlm.nih.gov/pubmed/20228616 http://dx.doi.org/10.2183/pjab.86.147 |
Sumario: | Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators. |
---|