Cargando…
Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression
The aim of this study was to explore whether single-wall carbon nanotubes (SWCNTs) can be used as artery tissue-engineering materials by promoting vascular adventitial fibroblasts (VAFs) to transform into myofibroblasts (MFs) and to find the signal pathway involved in this process. VAFs were primary...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418071/ https://www.ncbi.nlm.nih.gov/pubmed/22904629 http://dx.doi.org/10.2147/IJN.S34663 |
_version_ | 1782240591770288128 |
---|---|
author | Lin, Zhiqing Liu, Lihua Xi, Zhuge Huang, Jiehua Lin, Bencheng |
author_facet | Lin, Zhiqing Liu, Lihua Xi, Zhuge Huang, Jiehua Lin, Bencheng |
author_sort | Lin, Zhiqing |
collection | PubMed |
description | The aim of this study was to explore whether single-wall carbon nanotubes (SWCNTs) can be used as artery tissue-engineering materials by promoting vascular adventitial fibroblasts (VAFs) to transform into myofibroblasts (MFs) and to find the signal pathway involved in this process. VAFs were primary cultured and incubated with various doses of SWCNTs suspension (0, 0.8, 3.2, 12.5, 50, and 200 μg/mL). In the present study, we used three methods (MTT, WST-1, and WST-8) at the same time to detect the cell viability and immunofluorescence probe technology to investigate the effects of oxidative injury after VAFs incubated with SWCNTs. Immunocytochemical staining was used to detect SM(22)-α expression to confirm whether VAFs transformed into MFs. The protein levels were detected by western blotting. The results of immunocytochemical staining showed that SM(22)-α was expressed after incubation with 50 μg/mL SWCNTs for 96 hours, but with oxidative damage. The mRNA and protein levels of SM(22)-α, C-Jun N-terminal kinase, TGF-β(1), and TGF-β receptor II in VAFs increased with the dose of SWCNTs. The expression of the p-Smad2/3 protein was upregulated while the Smad7 protein was significantly down-regulated. Smad4 was translocated to the nucleus to regulate SM(22)-α gene expression. In conclusion, SWCNTs promoted VAFs to transform into MFs with SM(22)-α expression by the C-Jun N-terminal kinase/Smads signal pathway at the early stage (48 hours) but weakened quickly. SWCNTs also promoted the transformation by the TGF-β(l)/Smads signal pathway at the advanced stage in a persistent manner. These results indicate that SWCNTs can possibly be used as artery tissue-engineering materials. |
format | Online Article Text |
id | pubmed-3418071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34180712012-08-17 Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression Lin, Zhiqing Liu, Lihua Xi, Zhuge Huang, Jiehua Lin, Bencheng Int J Nanomedicine Original Research The aim of this study was to explore whether single-wall carbon nanotubes (SWCNTs) can be used as artery tissue-engineering materials by promoting vascular adventitial fibroblasts (VAFs) to transform into myofibroblasts (MFs) and to find the signal pathway involved in this process. VAFs were primary cultured and incubated with various doses of SWCNTs suspension (0, 0.8, 3.2, 12.5, 50, and 200 μg/mL). In the present study, we used three methods (MTT, WST-1, and WST-8) at the same time to detect the cell viability and immunofluorescence probe technology to investigate the effects of oxidative injury after VAFs incubated with SWCNTs. Immunocytochemical staining was used to detect SM(22)-α expression to confirm whether VAFs transformed into MFs. The protein levels were detected by western blotting. The results of immunocytochemical staining showed that SM(22)-α was expressed after incubation with 50 μg/mL SWCNTs for 96 hours, but with oxidative damage. The mRNA and protein levels of SM(22)-α, C-Jun N-terminal kinase, TGF-β(1), and TGF-β receptor II in VAFs increased with the dose of SWCNTs. The expression of the p-Smad2/3 protein was upregulated while the Smad7 protein was significantly down-regulated. Smad4 was translocated to the nucleus to regulate SM(22)-α gene expression. In conclusion, SWCNTs promoted VAFs to transform into MFs with SM(22)-α expression by the C-Jun N-terminal kinase/Smads signal pathway at the early stage (48 hours) but weakened quickly. SWCNTs also promoted the transformation by the TGF-β(l)/Smads signal pathway at the advanced stage in a persistent manner. These results indicate that SWCNTs can possibly be used as artery tissue-engineering materials. Dove Medical Press 2012 2012-08-01 /pmc/articles/PMC3418071/ /pubmed/22904629 http://dx.doi.org/10.2147/IJN.S34663 Text en © 2012 Lin et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Lin, Zhiqing Liu, Lihua Xi, Zhuge Huang, Jiehua Lin, Bencheng Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title | Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title_full | Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title_fullStr | Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title_full_unstemmed | Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title_short | Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM(22)-α expression |
title_sort | single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by sm(22)-α expression |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418071/ https://www.ncbi.nlm.nih.gov/pubmed/22904629 http://dx.doi.org/10.2147/IJN.S34663 |
work_keys_str_mv | AT linzhiqing singlewalledcarbonnanotubespromoteratvascularadventitialfibroblaststotransformintomyofibroblastsbysm22aexpression AT liulihua singlewalledcarbonnanotubespromoteratvascularadventitialfibroblaststotransformintomyofibroblastsbysm22aexpression AT xizhuge singlewalledcarbonnanotubespromoteratvascularadventitialfibroblaststotransformintomyofibroblastsbysm22aexpression AT huangjiehua singlewalledcarbonnanotubespromoteratvascularadventitialfibroblaststotransformintomyofibroblastsbysm22aexpression AT linbencheng singlewalledcarbonnanotubespromoteratvascularadventitialfibroblaststotransformintomyofibroblastsbysm22aexpression |