Cargando…
Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus
BACKGROUND: Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R) injury. The P2X7 receptor (P2X7R) has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury re...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418181/ https://www.ncbi.nlm.nih.gov/pubmed/22513224 http://dx.doi.org/10.1186/1742-2094-9-69 |
Sumario: | BACKGROUND: Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R) injury. The P2X7 receptor (P2X7R) has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. METHODS: Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG), adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP) or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO) method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL). In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. RESULTS: The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg) and A-0438079 (3 μg), and a low dosage of OxATP (1 μg) significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. CONCLUSIONS: Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury. |
---|