Cargando…
Regularization in Retrieval-Driven Classification of Clustered Microcalcifications for Breast Cancer
We propose a regularization based approach for case-adaptive classification in computer-aided diagnosis (CAD) of breast cancer. The goal is to improve the classification accuracy on a query case by making use of a set of similar cases retrieved from an existing library of known cases. In the propose...
Autores principales: | Jing, Hao, Yang, Yongyi, Nishikawa, Robert M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418652/ https://www.ncbi.nlm.nih.gov/pubmed/22919363 http://dx.doi.org/10.1155/2012/463408 |
Ejemplares similares
-
Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network
por: Xiao, Bingbing, et al.
Publicado: (2021) -
Independent Component Analysis to Detect Clustered Microcalcification Breast Cancers
por: Gallardo-Caballero, R., et al.
Publicado: (2012) -
Automated Detection and Classification of Microcalcification Clusters with Enhanced Preprocessing and Fractal Analysis
por: Gowri, V, et al.
Publicado: (2018) -
Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs
por: Mota, Ana M., et al.
Publicado: (2022) -
Classification of Microcalcification Clusters Using Bilateral Features Based on Graph Convolutional Network
por: Zhang, Yaqin, et al.
Publicado: (2022)