Cargando…

Antennal carboxylesterases in a moth, structural and functional diversity

Pheromone-degrading enzymes (PDEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly degrading pheromone molecules. Because esters are widespread insect pheromone components, PDEs belonging to the carboxylesterase (CCE) family have been t...

Descripción completa

Detalles Bibliográficos
Autores principales: Durand, Nicolas, Chertemps, Thomas, Maïbèche-Coisne, Martine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419116/
https://www.ncbi.nlm.nih.gov/pubmed/22896794
http://dx.doi.org/10.4161/cib.19701
Descripción
Sumario:Pheromone-degrading enzymes (PDEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly degrading pheromone molecules. Because esters are widespread insect pheromone components, PDEs belonging to the carboxylesterase (CCE) family have been the most studied. However, only two CCEs were both identified at the molecular level and functionally characterized as PDEs until recently. In the pest moth Spodoptera littoralis, we have identified an unsuspected diversity of antennal CCEs, with a total number of 30 genes. Two CCEs, enriched in antennae and belonging to distinct clades, were shown to present different substrate specificities toward pheromone and plant compounds. A same CCE was also shown to efficiently degrade both pheromone and plant components. Our results suggest that the structural evolution of antennal CCEs reflects their functional diversity and that a complex set of CCE-mediated reactions take place is the olfactory organs of moths.