Cargando…

Operational approach to open dynamics and quantifying initial correlations

A central aim of physics is to describe the dynamics of physical systems. Schrödinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynami...

Descripción completa

Detalles Bibliográficos
Autor principal: Modi, Kavan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419365/
https://www.ncbi.nlm.nih.gov/pubmed/22896813
http://dx.doi.org/10.1038/srep00581
Descripción
Sumario:A central aim of physics is to describe the dynamics of physical systems. Schrödinger's equation does this for isolated quantum systems. Describing the time evolution of a quantum system that interacts with its environment, in its most general form, has proved to be difficult because the dynamics is dependent on the state of the environment and the correlations with it. For discrete processes, such as quantum gates or chemical reactions, quantum process tomography provides the complete description of the dynamics, provided that the initial states of the system and the environment are independent of each other. However, many physical systems are correlated with the environment at the beginning of the experiment. Here, we give a prescription of quantum process tomography that yields the complete description of the dynamics of the system even when the initial correlations are present. Surprisingly, our method also gives quantitative expressions for the initial correlation.