Cargando…

Helical computerized tomography and NT-proBNP for screening of right ventricular overload on admission and at long term follow-up of acute pulmonary embolism

BACKGROUND: Right ventricular dysfunction (RVD) in acute pulmonary embolism (APE) can be assessed with helical computerized tomography (CT) and transthoracic echocardiography (TTE). Signs of RVD and elevated natriuretic peptides like NT-proBNP and cardiac troponin (TnT) are associated with increased...

Descripción completa

Detalles Bibliográficos
Autores principales: Laiho, Mia K, Harjola, Veli-Pekka, Graner, Marit, Piilonen, Anneli, Raade, Merja, Mustonen, Pirjo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422178/
https://www.ncbi.nlm.nih.gov/pubmed/22559861
http://dx.doi.org/10.1186/1757-7241-20-33
Descripción
Sumario:BACKGROUND: Right ventricular dysfunction (RVD) in acute pulmonary embolism (APE) can be assessed with helical computerized tomography (CT) and transthoracic echocardiography (TTE). Signs of RVD and elevated natriuretic peptides like NT-proBNP and cardiac troponin (TnT) are associated with increased risk of mortality. However, the prognostic role of both initial diagnostic strategy and the use of NT-proBNP and TnT for screening for long-term probability of RVD remains unknown. The aim of the study was to determine the role of helical CT and NT-proBNP in detection of RVD in the acute phase. In addition, the value of NT-proBNP for ruling out RVD at long-term follow-up was assessed. METHODS: Sixty-three non-high risk APE patients were studied. RVD was assessed at admission in the emergency department by CT and TTE, and both NT-proBNP and TnT samples were taken. These, excepting CT, were repeated seven months later. RESULTS: At admission RVD was detected by CT in 37 (59 %) patients. RVD in CT correlated strongly with RVD in TTE (p < 0.0001). NT-proBNP was elevated (≥ 350 ng/l) in 32 (86 %) patients with RVD but in only seven (27 %) patients without RVD (p < 0.0001). All the patients survived until the 7-month follow-up. TTE showed persistent RVD in 6 of 63 (10 %) patients who all had RVD in CT at admission. All of them had elevated NT-proBNP levels in the follow-up compared with 5 (9 %) of patients without RVD (p < 0.0001). CONCLUSIONS: TTE does not confer further benefit when helical CT is used for screening for RVD in non-high risk APE. All the patients who were found to have RVD in TTE at seven months follow-up had had RVD in the acute phase CT as well. Thus, patients without RVD in diagnostic CT do not seem to require further routine follow-up to screen for RVD later. On the other hand, persistent RVD and thus need for TTE control can be ruled out by assessment of NT-proBNP at follow-up. A follow-up protocol based on these findings is suggested.