Cargando…

The Neuromagnetic Dynamics of Time Perception

Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (<.5 s) versus long tones (>.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta...

Descripción completa

Detalles Bibliográficos
Autores principales: Carver, Frederick W., Elvevåg, Brita, Altamura, Mario, Weinberger, Daniel R., Coppola, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422225/
https://www.ncbi.nlm.nih.gov/pubmed/22912714
http://dx.doi.org/10.1371/journal.pone.0042618
Descripción
Sumario:Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (<.5 s) versus long tones (>.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13–30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral inferior frontal gyrus. In the long condition, a right lateralized network was active, including lateral prefrontal cortices, inferior frontal gyrus, supramarginal gyrus and secondary auditory areas. Activation in this network peaked just after attention to tone duration was no longer necessary, suggesting a role in sustaining representation of the interval. These data expand our understanding of time perception by revealing its complex cortical spatiotemporal signature.