Cargando…
Inhibition of autophagy and tumor growth in colon cancer by miR-502
Autophagy is a catabolic process that allows cellular macromolecules to be broken down and recycled as metabolic precursors. The influence of non-coding microRNAs (miRNAs) in autophagy has not been explored in colon cancer. In this study, we discover a novel mechanism of autophagy regulated by hsa-m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422411/ https://www.ncbi.nlm.nih.gov/pubmed/22580605 http://dx.doi.org/10.1038/onc.2012.167 |
Sumario: | Autophagy is a catabolic process that allows cellular macromolecules to be broken down and recycled as metabolic precursors. The influence of non-coding microRNAs (miRNAs) in autophagy has not been explored in colon cancer. In this study, we discover a novel mechanism of autophagy regulated by hsa-miR-502-5p (miR-502) by suppression of Rab1B, a critical mediator of autophagy. A number of other miR-502 suppressed mRNA targets (e.g. DHODH) are also identified by microarray analysis. Ectopic expression of miR-502 inhibited autophagy, colon cancer cell growth, and cell cycle progression of colon cancer cells in vitro. miR-502 also inhibited in vivo colon cancer growth in a mouse tumor xenografts model. In addition, the expression of miR-502 was regulated by p53 via a negative feedback regulatory mechanism. The expression of miR-502 was down-regulated in colon cancer patient specimens compared to the paired normal control samples. These results suggest that miR-502 may function as a potential tumor suppressor and therefore be a novel candidate for developing miR-502 based therapeutic strategies. |
---|