Cargando…
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
OBJECTIVE: The classification of complex or rare patterns in clinical and genomic data requires the availability of a large, labeled patient set. While methods that operate on large, centralized data sources have been extensively used, little attention has been paid to understanding whether models s...
Autores principales: | Wu, Yuan, Jiang, Xiaoqian, Kim, Jihoon, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422844/ https://www.ncbi.nlm.nih.gov/pubmed/22511014 http://dx.doi.org/10.1136/amiajnl-2012-000862 |
Ejemplares similares
-
Secure Multi-pArty Computation Grid LOgistic REgression (SMAC-GLORE)
por: Shi, Haoyi, et al.
Publicado: (2016) -
Grid multi-category response logistic models
por: Wu, Yuan, et al.
Publicado: (2015) -
A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research
por: Meeker, Daniella, et al.
Publicado: (2015) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022) -
Fair compute loads enabled by blockchain: sharing models by alternating client and server roles
por: Kuo, Tsung-Ting, et al.
Publicado: (2019)