Cargando…
Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci
Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423410/ https://www.ncbi.nlm.nih.gov/pubmed/22916149 http://dx.doi.org/10.1371/journal.pone.0042711 |
_version_ | 1782241105389027328 |
---|---|
author | López, Sonia Buil, Alfonso Souto, Juan Carlos Casademont, Jordi Blangero, John Martinez-Perez, Angel Fontcuberta, Jordi Lathrop, Mark Almasy, Laura Soria, Jose Manuel |
author_facet | López, Sonia Buil, Alfonso Souto, Juan Carlos Casademont, Jordi Blangero, John Martinez-Perez, Angel Fontcuberta, Jordi Lathrop, Mark Almasy, Laura Soria, Jose Manuel |
author_sort | López, Sonia |
collection | PubMed |
description | Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels by quantitative real-time PCR in 386 subjects from 21 extended Spanish families. A variance component linkage method using 485 microsatellites was conducted to evaluate linkage and to detect quantitative trait loci (QTLs) involved in the control of mtDNA levels. The heritalibility of mtDNA levels was 0.33 (p = 1.82e-05). We identified a QTL on Chromosome 2 (LOD = 2.21) using all of the subjects, independently on their sex. When females and males were analysed separately, three QTLs were identified. Females showed the same QTL on Chromosome 2 (LOD = 3.09), indicating that the QTL identified in the analysis using all of the subjects was a strong female QTL, and another one on Chromosome 3 (LOD = 2.67), whereas in males a QTL was identified on Chromosome 1 (LOD = 2.81). These QTLs were fine-mapped to find associations with mtDNA levels. The most significant SNP association was for the rs10888838 on Chromosome 1 in males. This SNP mapped to the gene MRPL37, involved in mitochondrial protein translation. The rs2140855 on Chromosome 2 showed association in the analysis using all of the subjects. It was near the gene CMPK2, which encodes a mitochondrial enzyme of the salvage pathway of deoxyribonucleotide synthesis. Our results provide evidence of a sex-specific genetic mechanism for the control of mtDNA levels and provide a framework to identify new genes that influence mtDNA levels. |
format | Online Article Text |
id | pubmed-3423410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34234102012-08-22 Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci López, Sonia Buil, Alfonso Souto, Juan Carlos Casademont, Jordi Blangero, John Martinez-Perez, Angel Fontcuberta, Jordi Lathrop, Mark Almasy, Laura Soria, Jose Manuel PLoS One Research Article Altered mitochondrial DNA (mtDNA) levels have been associated with common diseases in humans. We investigated the genetic mechanism that controls mtDNA levels using genome-wide linkage analyses in families from the Genetic Analysis of Idiopathic Thrombophilia Project (GAIT). We measure mtDNA levels by quantitative real-time PCR in 386 subjects from 21 extended Spanish families. A variance component linkage method using 485 microsatellites was conducted to evaluate linkage and to detect quantitative trait loci (QTLs) involved in the control of mtDNA levels. The heritalibility of mtDNA levels was 0.33 (p = 1.82e-05). We identified a QTL on Chromosome 2 (LOD = 2.21) using all of the subjects, independently on their sex. When females and males were analysed separately, three QTLs were identified. Females showed the same QTL on Chromosome 2 (LOD = 3.09), indicating that the QTL identified in the analysis using all of the subjects was a strong female QTL, and another one on Chromosome 3 (LOD = 2.67), whereas in males a QTL was identified on Chromosome 1 (LOD = 2.81). These QTLs were fine-mapped to find associations with mtDNA levels. The most significant SNP association was for the rs10888838 on Chromosome 1 in males. This SNP mapped to the gene MRPL37, involved in mitochondrial protein translation. The rs2140855 on Chromosome 2 showed association in the analysis using all of the subjects. It was near the gene CMPK2, which encodes a mitochondrial enzyme of the salvage pathway of deoxyribonucleotide synthesis. Our results provide evidence of a sex-specific genetic mechanism for the control of mtDNA levels and provide a framework to identify new genes that influence mtDNA levels. Public Library of Science 2012-08-20 /pmc/articles/PMC3423410/ /pubmed/22916149 http://dx.doi.org/10.1371/journal.pone.0042711 Text en © 2012 López et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article López, Sonia Buil, Alfonso Souto, Juan Carlos Casademont, Jordi Blangero, John Martinez-Perez, Angel Fontcuberta, Jordi Lathrop, Mark Almasy, Laura Soria, Jose Manuel Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title | Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title_full | Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title_fullStr | Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title_full_unstemmed | Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title_short | Sex-Specific Regulation of Mitochondrial DNA Levels: Genome-Wide Linkage Analysis to Identify Quantitative Trait Loci |
title_sort | sex-specific regulation of mitochondrial dna levels: genome-wide linkage analysis to identify quantitative trait loci |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423410/ https://www.ncbi.nlm.nih.gov/pubmed/22916149 http://dx.doi.org/10.1371/journal.pone.0042711 |
work_keys_str_mv | AT lopezsonia sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT builalfonso sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT soutojuancarlos sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT casademontjordi sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT blangerojohn sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT martinezperezangel sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT fontcubertajordi sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT lathropmark sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT almasylaura sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci AT soriajosemanuel sexspecificregulationofmitochondrialdnalevelsgenomewidelinkageanalysistoidentifyquantitativetraitloci |