Cargando…
Brain Transcriptional Responses to High-Fat Diet in Acads-Deficient Mice Reveal Energy Sensing Pathways
BACKGROUND: How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain), the enzyme responsible for mitochondrial beta-oxidation of C4–C6 short-ch...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425564/ https://www.ncbi.nlm.nih.gov/pubmed/22936979 http://dx.doi.org/10.1371/journal.pone.0041709 |
Sumario: | BACKGROUND: How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain), the enzyme responsible for mitochondrial beta-oxidation of C4–C6 short-chain fatty acids (SCFAs), shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads−/− mice. METHODOLOGY/PRINCIPAL FINDINGS: We performed a transcriptional analysis of gene expression in brain tissue of Acads−/− and Acads+/+ mice fed either a high-fat (HF) or low-fat (LF) diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads−/− vs. HF Acads+/+ (3917) and Acads+/+ HF vs. LF Acads+/+ (3879) revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads−/− mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP. CONCLUSIONS: Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy-sensing mechanism linking fatty acid oxidation to feeding behavior in this model. |
---|