Cargando…

Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis

BACKGROUND: Although genome-wide transcriptional analysis has been used for many years to study bacterial gene expression, many aspects of the bacterial transcriptome remain undefined. One example is antisense transcription, which has been observed in a number of bacteria, though the function of ant...

Descripción completa

Detalles Bibliográficos
Autores principales: Passalacqua, Karla D., Varadarajan, Anjana, Weist, Charlotte, Ondov, Brian D., Byrd, Benjamin, Read, Timothy D., Bergman, Nicholas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425587/
https://www.ncbi.nlm.nih.gov/pubmed/22937038
http://dx.doi.org/10.1371/journal.pone.0043350
_version_ 1782241400766595072
author Passalacqua, Karla D.
Varadarajan, Anjana
Weist, Charlotte
Ondov, Brian D.
Byrd, Benjamin
Read, Timothy D.
Bergman, Nicholas H.
author_facet Passalacqua, Karla D.
Varadarajan, Anjana
Weist, Charlotte
Ondov, Brian D.
Byrd, Benjamin
Read, Timothy D.
Bergman, Nicholas H.
author_sort Passalacqua, Karla D.
collection PubMed
description BACKGROUND: Although genome-wide transcriptional analysis has been used for many years to study bacterial gene expression, many aspects of the bacterial transcriptome remain undefined. One example is antisense transcription, which has been observed in a number of bacteria, though the function of antisense transcripts, and their distribution across the bacterial genome, is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Single-stranded RNA-seq results revealed a widespread and non-random pattern of antisense transcription covering more than two thirds of the B. anthracis genome. Our analysis revealed a variety of antisense structural patterns, suggesting multiple mechanisms of antisense transcription. The data revealed several instances of sense and antisense expression changes in different growth conditions, suggesting that antisense transcription may play a role in the ways in which B. anthracis responds to its environment. Significantly, genome-wide antisense expression occurred at consistently higher levels on the lagging strand, while the leading strand showed very little antisense activity. Intrasample gene expression comparisons revealed a gene dosage effect in all growth conditions, where genes farthest from the origin showed the lowest overall range of expression for both sense and antisense directed transcription. Additionally, transcription from both strands was verified using a novel strand-specific assay. The variety of structural patterns we observed in antisense transcription suggests multiple mechanisms for this phenomenon, suggesting that some antisense transcription may play a role in regulating the expression of key genes, while some may be due to chromosome replication dynamics and transcriptional noise. CONCLUSIONS/SIGNIFICANCE: Although the variety of structural patterns we observed in antisense transcription suggest multiple mechanisms for antisense expression, our data also clearly indicate that antisense transcription may play a genome-wide role in regulating the expression of key genes in Bacillus species. This study illustrates the surprising complexity of prokaryotic RNA abundance for both strands of a bacterial chromosome.
format Online
Article
Text
id pubmed-3425587
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34255872012-08-30 Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis Passalacqua, Karla D. Varadarajan, Anjana Weist, Charlotte Ondov, Brian D. Byrd, Benjamin Read, Timothy D. Bergman, Nicholas H. PLoS One Research Article BACKGROUND: Although genome-wide transcriptional analysis has been used for many years to study bacterial gene expression, many aspects of the bacterial transcriptome remain undefined. One example is antisense transcription, which has been observed in a number of bacteria, though the function of antisense transcripts, and their distribution across the bacterial genome, is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Single-stranded RNA-seq results revealed a widespread and non-random pattern of antisense transcription covering more than two thirds of the B. anthracis genome. Our analysis revealed a variety of antisense structural patterns, suggesting multiple mechanisms of antisense transcription. The data revealed several instances of sense and antisense expression changes in different growth conditions, suggesting that antisense transcription may play a role in the ways in which B. anthracis responds to its environment. Significantly, genome-wide antisense expression occurred at consistently higher levels on the lagging strand, while the leading strand showed very little antisense activity. Intrasample gene expression comparisons revealed a gene dosage effect in all growth conditions, where genes farthest from the origin showed the lowest overall range of expression for both sense and antisense directed transcription. Additionally, transcription from both strands was verified using a novel strand-specific assay. The variety of structural patterns we observed in antisense transcription suggests multiple mechanisms for this phenomenon, suggesting that some antisense transcription may play a role in regulating the expression of key genes, while some may be due to chromosome replication dynamics and transcriptional noise. CONCLUSIONS/SIGNIFICANCE: Although the variety of structural patterns we observed in antisense transcription suggest multiple mechanisms for antisense expression, our data also clearly indicate that antisense transcription may play a genome-wide role in regulating the expression of key genes in Bacillus species. This study illustrates the surprising complexity of prokaryotic RNA abundance for both strands of a bacterial chromosome. Public Library of Science 2012-08-22 /pmc/articles/PMC3425587/ /pubmed/22937038 http://dx.doi.org/10.1371/journal.pone.0043350 Text en © 2012 Passalacqua et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Passalacqua, Karla D.
Varadarajan, Anjana
Weist, Charlotte
Ondov, Brian D.
Byrd, Benjamin
Read, Timothy D.
Bergman, Nicholas H.
Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title_full Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title_fullStr Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title_full_unstemmed Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title_short Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis
title_sort strand-specific rna-seq reveals ordered patterns of sense and antisense transcription in bacillus anthracis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425587/
https://www.ncbi.nlm.nih.gov/pubmed/22937038
http://dx.doi.org/10.1371/journal.pone.0043350
work_keys_str_mv AT passalacquakarlad strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT varadarajananjana strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT weistcharlotte strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT ondovbriand strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT byrdbenjamin strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT readtimothyd strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis
AT bergmannicholash strandspecificrnaseqrevealsorderedpatternsofsenseandantisensetranscriptioninbacillusanthracis