Cargando…
Some Clouds Have a Silver Lining: Paradoxes of Anthropogenic Perturbations from Study Cases on Long-Lived Social Birds
In recent centuries and above all over the last few decades, human activities have generated perturbations (from mild to very severe or catastrophes) that, when added to those of natural origin, constitute a global threat to biodiversity. Predicting the effects of anthropogenic perturbations on spec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425592/ https://www.ncbi.nlm.nih.gov/pubmed/22936988 http://dx.doi.org/10.1371/journal.pone.0042753 |
Sumario: | In recent centuries and above all over the last few decades, human activities have generated perturbations (from mild to very severe or catastrophes) that, when added to those of natural origin, constitute a global threat to biodiversity. Predicting the effects of anthropogenic perturbations on species and communities is a great scientific challenge given the complexity of ecosystems and the need for detailed population data from both before and after the perturbations. Here we present three cases of well-documented anthropogenic severe perturbations (different forms of habitat loss and deterioration influencing fertility and survival) that have affected three species of birds (a raptor, a scavenger and a waterbird) for which we possess long-term population time series. We tested whether the perturbations caused serious population decline or whether the study species were resilient, that is, its population dynamics were relatively unaffected. Two of the species did decline, although to a relatively small extent with no shift to a state of lower population numbers. Subsequently, these populations recovered rapidly and numbers reached similar levels to before the perturbations. Strikingly, in the third species a strong breakpoint took place towards greater population sizes, probably due to the colonization of new areas by recruits that were queuing at the destroyed habitat. Even though it is difficult to draw patterns of resilience from only three cases, the study species were all long-lived, social species with excellent dispersal and colonization abilities, capable of skipping reproduction and undergoing a phase of significant long-term population increase. The search for such patterns is crucial for optimizing the limited resources allocated to conservation and for predicting the future impact of planned anthropogenic activities on ecosystems. |
---|