Cargando…
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to deter...
Autores principales: | Santonja, F., Chen-Charpentier, B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426294/ https://www.ncbi.nlm.nih.gov/pubmed/22927889 http://dx.doi.org/10.1155/2012/742086 |
Ejemplares similares
-
Quantification of Geometric Uncertainties in Single Cell Cavities for BESSY VSR Using Polynomial Chaos
por: Heller, J, et al.
Publicado: (2014) -
Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions
por: Paulson, Joel A., et al.
Publicado: (2019) -
Uncertainty quantification of multi-scale resilience in networked systems with nonlinear dynamics using arbitrary polynomial chaos
por: Zou, Mengbang, et al.
Publicado: (2023) -
Intrusive Polynomial Chaos for CFD Using OpenFOAM
por: Parekh, Jigar, et al.
Publicado: (2020) -
Polynomial chaos methods for hyperbolic partial differential equations: numerical techniques for fluid dynamics problems in the presence of uncertainties
por: Pettersson, Mass Per, et al.
Publicado: (2015)