Cargando…

Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation

Patient and neuroimaging research have provided increasing support for a role of the posterior-lateral cerebellum in cognition, particularly attention. During rapid serial visual presentation, when two targets are presented in close temporal proximity (<500 ms), accuracy at detecting the second t...

Descripción completa

Detalles Bibliográficos
Autores principales: Arasanz, Carla P., Staines, W. Richard, Schweizer, Tom A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426766/
https://www.ncbi.nlm.nih.gov/pubmed/22936903
http://dx.doi.org/10.3389/fnbeh.2012.00055
_version_ 1782241537757806592
author Arasanz, Carla P.
Staines, W. Richard
Schweizer, Tom A.
author_facet Arasanz, Carla P.
Staines, W. Richard
Schweizer, Tom A.
author_sort Arasanz, Carla P.
collection PubMed
description Patient and neuroimaging research have provided increasing support for a role of the posterior-lateral cerebellum in cognition, particularly attention. During rapid serial visual presentation, when two targets are presented in close temporal proximity (<500 ms), accuracy at detecting the second target (T2) suffers. This phenomenon is known as the attentional blink (AB), and in cerebellar lesion patients this effect is exaggerated. Damage to the cerebellum may thus disrupt the use of attentional resources during stimulus processing conditions that are temporally demanding. There are reciprocal connections between the cerebral cortex and the contralateral cerebellum, these connections allow for the possibility that lateralized functions in the cerebral cortex (such as language) remain lateralized in the cerebellum. The purpose of this study was to investigate the temporal characteristics of the cerebellar contribution to the AB and to functionally localize the contribution of the cerebellum to the AB using transcranial magnetic stimulation (TMS). We hypothesized that T2 accuracy would decrease after right cerebellar stimulation when the delay between the first target (T1) and T2 was short (120–400 ms) compared to long (720–960 ms). We used continuous theta burst stimulation (cTBS), a form of TMS, to transiently inhibit a focal population of neurons in the left and right posterior-lateral cerebellum of healthy participants (n = 45). Three groups of participants (n = 15) performed the AB before and after either sham, left, or right cerebellar stimulation. The results of this cTBS study support our hypothesis. During the short delay, participants in the right cTBS group showed a greater AB magnitude compared to both the left and sham cTBS groups (p < 0.05). No difference in T2 detection was found over long delays. The results provide further support for a cerebellar contribution to an integrated neural network recruited during temporally demanding attention-based tasks.
format Online
Article
Text
id pubmed-3426766
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-34267662012-08-30 Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation Arasanz, Carla P. Staines, W. Richard Schweizer, Tom A. Front Behav Neurosci Neuroscience Patient and neuroimaging research have provided increasing support for a role of the posterior-lateral cerebellum in cognition, particularly attention. During rapid serial visual presentation, when two targets are presented in close temporal proximity (<500 ms), accuracy at detecting the second target (T2) suffers. This phenomenon is known as the attentional blink (AB), and in cerebellar lesion patients this effect is exaggerated. Damage to the cerebellum may thus disrupt the use of attentional resources during stimulus processing conditions that are temporally demanding. There are reciprocal connections between the cerebral cortex and the contralateral cerebellum, these connections allow for the possibility that lateralized functions in the cerebral cortex (such as language) remain lateralized in the cerebellum. The purpose of this study was to investigate the temporal characteristics of the cerebellar contribution to the AB and to functionally localize the contribution of the cerebellum to the AB using transcranial magnetic stimulation (TMS). We hypothesized that T2 accuracy would decrease after right cerebellar stimulation when the delay between the first target (T1) and T2 was short (120–400 ms) compared to long (720–960 ms). We used continuous theta burst stimulation (cTBS), a form of TMS, to transiently inhibit a focal population of neurons in the left and right posterior-lateral cerebellum of healthy participants (n = 45). Three groups of participants (n = 15) performed the AB before and after either sham, left, or right cerebellar stimulation. The results of this cTBS study support our hypothesis. During the short delay, participants in the right cTBS group showed a greater AB magnitude compared to both the left and sham cTBS groups (p < 0.05). No difference in T2 detection was found over long delays. The results provide further support for a cerebellar contribution to an integrated neural network recruited during temporally demanding attention-based tasks. Frontiers Media S.A. 2012-08-24 /pmc/articles/PMC3426766/ /pubmed/22936903 http://dx.doi.org/10.3389/fnbeh.2012.00055 Text en Copyright © 2012 Arasanz, Staines and Schweizer. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Neuroscience
Arasanz, Carla P.
Staines, W. Richard
Schweizer, Tom A.
Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title_full Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title_fullStr Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title_full_unstemmed Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title_short Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
title_sort isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426766/
https://www.ncbi.nlm.nih.gov/pubmed/22936903
http://dx.doi.org/10.3389/fnbeh.2012.00055
work_keys_str_mv AT arasanzcarlap isolatingacerebellarcontributiontorapidvisualattentionusingtranscranialmagneticstimulation
AT staineswrichard isolatingacerebellarcontributiontorapidvisualattentionusingtranscranialmagneticstimulation
AT schweizertoma isolatingacerebellarcontributiontorapidvisualattentionusingtranscranialmagneticstimulation