Cargando…
Discriminative local subspaces in gene expression data for effective gene function prediction
Motivation: Massive amounts of genome-wide gene expression data have become available, motivating the development of computational approaches that leverage this information to predict gene function. Among successful approaches, supervised machine learning methods, such as Support Vector Machines (SV...
Autores principales: | Puelma, Tomas, Gutiérrez, Rodrigo A., Soto, Alvaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426849/ https://www.ncbi.nlm.nih.gov/pubmed/22820203 http://dx.doi.org/10.1093/bioinformatics/bts455 |
Ejemplares similares
-
GENIUS: web server to predict local gene networks and key genes for biological functions
por: Puelma, Tomas, et al.
Publicado: (2017) -
Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles
por: Yang, Liying, et al.
Publicado: (2016) -
A self-training subspace clustering algorithm based on adaptive confidence for gene expression data
por: Li, Dan, et al.
Publicado: (2023) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes
por: Alexandre, Leonardo, et al.
Publicado: (2022)