Cargando…

Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide

Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasala, Beth A., Lee, Philip A., Shen, Zhouxin, Briggs, Steven P., Mendez, Michael, Mayfield, Stephen P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427385/
https://www.ncbi.nlm.nih.gov/pubmed/22937037
http://dx.doi.org/10.1371/journal.pone.0043349
_version_ 1782241610392666112
author Rasala, Beth A.
Lee, Philip A.
Shen, Zhouxin
Briggs, Steven P.
Mendez, Michael
Mayfield, Stephen P.
author_facet Rasala, Beth A.
Lee, Philip A.
Shen, Zhouxin
Briggs, Steven P.
Mendez, Michael
Mayfield, Stephen P.
author_sort Rasala, Beth A.
collection PubMed
description Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.
format Online
Article
Text
id pubmed-3427385
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34273852012-08-30 Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide Rasala, Beth A. Lee, Philip A. Shen, Zhouxin Briggs, Steven P. Mendez, Michael Mayfield, Stephen P. PLoS One Research Article Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology. Public Library of Science 2012-08-24 /pmc/articles/PMC3427385/ /pubmed/22937037 http://dx.doi.org/10.1371/journal.pone.0043349 Text en © 2012 Rasala et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Rasala, Beth A.
Lee, Philip A.
Shen, Zhouxin
Briggs, Steven P.
Mendez, Michael
Mayfield, Stephen P.
Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title_full Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title_fullStr Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title_full_unstemmed Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title_short Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide
title_sort robust expression and secretion of xylanase1 in chlamydomonas reinhardtii by fusion to a selection gene and processing with the fmdv 2a peptide
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427385/
https://www.ncbi.nlm.nih.gov/pubmed/22937037
http://dx.doi.org/10.1371/journal.pone.0043349
work_keys_str_mv AT rasalabetha robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide
AT leephilipa robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide
AT shenzhouxin robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide
AT briggsstevenp robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide
AT mendezmichael robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide
AT mayfieldstephenp robustexpressionandsecretionofxylanase1inchlamydomonasreinhardtiibyfusiontoaselectiongeneandprocessingwiththefmdv2apeptide