Cargando…
Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier
Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427386/ https://www.ncbi.nlm.nih.gov/pubmed/22937049 http://dx.doi.org/10.1371/journal.pone.0043425 |
_version_ | 1782241610630692864 |
---|---|
author | Chen, Xing Liu, Ming-Xi Cui, Qing-Hua Yan, Gui-Ying |
author_facet | Chen, Xing Liu, Ming-Xi Cui, Qing-Hua Yan, Gui-Ying |
author_sort | Chen, Xing |
collection | PubMed |
description | Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the understanding of the mechanisms by which miRNAs and EFs contribute to disease, but also for disease diagnosis, treatment, and prognosis. In this paper, we analyzed the human miRNA-EF interaction data and revealed that miRNAs (EFs) with similar functions tend to interact with similar EFs (miRNAs) in the context of a given disease, which suggests a potential way to expand the current relation space of miRNAs, EFs, and diseases. Based on this observation, we further proposed a semi-supervised classifier based method (miREFScan) to predict novel disease-related interactions between miRNAs and EFs. As a result, the leave-one-out cross validation has shown that miREFScan obtained an AUC of 0.9564, indicating that miREFScan has a reliable performance. Moreover, we applied miREFScan to predict acute promyelocytic leukemia-related miRNA-EF interactions. The result shows that forty-nine of the top 1% predictions have been confirmed by experimental literature. In addition, using miREFScan we predicted and publicly released novel miRNA-EF interactions for 97 human diseases. Finally, we believe that miREFScan would be a useful bioinformatic resource for the research about the relationships among miRNAs, EFs, and human diseases. |
format | Online Article Text |
id | pubmed-3427386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34273862012-08-30 Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier Chen, Xing Liu, Ming-Xi Cui, Qing-Hua Yan, Gui-Ying PLoS One Research Article Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the understanding of the mechanisms by which miRNAs and EFs contribute to disease, but also for disease diagnosis, treatment, and prognosis. In this paper, we analyzed the human miRNA-EF interaction data and revealed that miRNAs (EFs) with similar functions tend to interact with similar EFs (miRNAs) in the context of a given disease, which suggests a potential way to expand the current relation space of miRNAs, EFs, and diseases. Based on this observation, we further proposed a semi-supervised classifier based method (miREFScan) to predict novel disease-related interactions between miRNAs and EFs. As a result, the leave-one-out cross validation has shown that miREFScan obtained an AUC of 0.9564, indicating that miREFScan has a reliable performance. Moreover, we applied miREFScan to predict acute promyelocytic leukemia-related miRNA-EF interactions. The result shows that forty-nine of the top 1% predictions have been confirmed by experimental literature. In addition, using miREFScan we predicted and publicly released novel miRNA-EF interactions for 97 human diseases. Finally, we believe that miREFScan would be a useful bioinformatic resource for the research about the relationships among miRNAs, EFs, and human diseases. Public Library of Science 2012-08-24 /pmc/articles/PMC3427386/ /pubmed/22937049 http://dx.doi.org/10.1371/journal.pone.0043425 Text en © 2012 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chen, Xing Liu, Ming-Xi Cui, Qing-Hua Yan, Gui-Ying Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title_full | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title_fullStr | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title_full_unstemmed | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title_short | Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier |
title_sort | prediction of disease-related interactions between micrornas and environmental factors based on a semi-supervised classifier |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427386/ https://www.ncbi.nlm.nih.gov/pubmed/22937049 http://dx.doi.org/10.1371/journal.pone.0043425 |
work_keys_str_mv | AT chenxing predictionofdiseaserelatedinteractionsbetweenmicrornasandenvironmentalfactorsbasedonasemisupervisedclassifier AT liumingxi predictionofdiseaserelatedinteractionsbetweenmicrornasandenvironmentalfactorsbasedonasemisupervisedclassifier AT cuiqinghua predictionofdiseaserelatedinteractionsbetweenmicrornasandenvironmentalfactorsbasedonasemisupervisedclassifier AT yanguiying predictionofdiseaserelatedinteractionsbetweenmicrornasandenvironmentalfactorsbasedonasemisupervisedclassifier |