Cargando…
Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier
Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the...
Autores principales: | Chen, Xing, Liu, Ming-Xi, Cui, Qing-Hua, Yan, Gui-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427386/ https://www.ncbi.nlm.nih.gov/pubmed/22937049 http://dx.doi.org/10.1371/journal.pone.0043425 |
Ejemplares similares
-
Semi-supervised learning for potential human microRNA-disease associations inference
por: Chen, Xing, et al.
Publicado: (2014) -
Semi-supervised classifier guided by discriminator
por: Jamroziński, Sebastian, et al.
Publicado: (2022) -
Specific Roles of MicroRNAs in Their Interactions with Environmental Factors
por: Wang, Juan, et al.
Publicado: (2012) -
Modulation of microRNA Activity by Semi-microRNAs
por: Plante, Isabelle, et al.
Publicado: (2012) -
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
por: Pan, Xiaoyong, et al.
Publicado: (2019)