Cargando…
Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment
The normal tissue tolerance levels to fractionated radiotherapy have been appreciated by a century of careful clinical observations and radiobiological studies in animals. During clinical fractionated radiotherapy, these normal tissue tolerance levels are respected, and severe sequelae of radiothera...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427882/ https://www.ncbi.nlm.nih.gov/pubmed/21491423 http://dx.doi.org/10.1002/ijc.25953 |
_version_ | 1782241645118357504 |
---|---|
author | Bourton, Emma C Plowman, Piers N Smith, Daniel Arlett, Colin F Parris, Christopher N |
author_facet | Bourton, Emma C Plowman, Piers N Smith, Daniel Arlett, Colin F Parris, Christopher N |
author_sort | Bourton, Emma C |
collection | PubMed |
description | The normal tissue tolerance levels to fractionated radiotherapy have been appreciated by a century of careful clinical observations and radiobiological studies in animals. During clinical fractionated radiotherapy, these normal tissue tolerance levels are respected, and severe sequelae of radiotherapy are avoided in the majority of patients. Notwithstanding, a minority of patients experience unexpectedly severe normal tissue reactions. The ability to predict which patients might form this minority would be important. We have conducted a study to develop a rapid and reliable diagnostic test to predict excessive normal tissue toxicity (NTT) in radiotherapy patients. A flow cytometric immunocytochemical assay was used to measure DNA damage in peripheral blood lymphocytes (PBL) from cancer patients exposed to 2-Gy gamma radiation. DNA damage and repair was measured by induction of cellular γ-H2AX in unirradiated and exposed cells at specific time points following exposure. In 12 cancer patients that experienced severe atypical NTT following radiotherapy, there was a failure to repair DNA double-strand breaks (DSB) as measured by γ-H2AX induction and persistence. In ten cancer patients that experienced little or no NTT and in seven normal (noncancer controls), efficient repair of DNA DSB was observed in the γ-H2AX assay. We conclude that a flow cytometric assay based on γ-H2AX induction in PBL of radiotherapy patients may represent a robust, rapid and reliable biomarker to predict NTT during radiotherapy. Further research is required with a larger patient cohort to validate this important study. |
format | Online Article Text |
id | pubmed-3427882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-34278822012-08-27 Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment Bourton, Emma C Plowman, Piers N Smith, Daniel Arlett, Colin F Parris, Christopher N Int J Cancer Cancer Therapy The normal tissue tolerance levels to fractionated radiotherapy have been appreciated by a century of careful clinical observations and radiobiological studies in animals. During clinical fractionated radiotherapy, these normal tissue tolerance levels are respected, and severe sequelae of radiotherapy are avoided in the majority of patients. Notwithstanding, a minority of patients experience unexpectedly severe normal tissue reactions. The ability to predict which patients might form this minority would be important. We have conducted a study to develop a rapid and reliable diagnostic test to predict excessive normal tissue toxicity (NTT) in radiotherapy patients. A flow cytometric immunocytochemical assay was used to measure DNA damage in peripheral blood lymphocytes (PBL) from cancer patients exposed to 2-Gy gamma radiation. DNA damage and repair was measured by induction of cellular γ-H2AX in unirradiated and exposed cells at specific time points following exposure. In 12 cancer patients that experienced severe atypical NTT following radiotherapy, there was a failure to repair DNA double-strand breaks (DSB) as measured by γ-H2AX induction and persistence. In ten cancer patients that experienced little or no NTT and in seven normal (noncancer controls), efficient repair of DNA DSB was observed in the γ-H2AX assay. We conclude that a flow cytometric assay based on γ-H2AX induction in PBL of radiotherapy patients may represent a robust, rapid and reliable biomarker to predict NTT during radiotherapy. Further research is required with a larger patient cohort to validate this important study. Wiley Subscription Services, Inc., A Wiley Company 2011-12-15 2011-02-03 /pmc/articles/PMC3427882/ /pubmed/21491423 http://dx.doi.org/10.1002/ijc.25953 Text en Copyright © 2011 UICC http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Cancer Therapy Bourton, Emma C Plowman, Piers N Smith, Daniel Arlett, Colin F Parris, Christopher N Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title | Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title_full | Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title_fullStr | Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title_full_unstemmed | Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title_short | Prolonged expression of the γ-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
title_sort | prolonged expression of the γ-h2ax dna repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment |
topic | Cancer Therapy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427882/ https://www.ncbi.nlm.nih.gov/pubmed/21491423 http://dx.doi.org/10.1002/ijc.25953 |
work_keys_str_mv | AT bourtonemmac prolongedexpressionofthegh2axdnarepairbiomarkercorrelateswithexcessacuteandchronictoxicityfromradiotherapytreatment AT plowmanpiersn prolongedexpressionofthegh2axdnarepairbiomarkercorrelateswithexcessacuteandchronictoxicityfromradiotherapytreatment AT smithdaniel prolongedexpressionofthegh2axdnarepairbiomarkercorrelateswithexcessacuteandchronictoxicityfromradiotherapytreatment AT arlettcolinf prolongedexpressionofthegh2axdnarepairbiomarkercorrelateswithexcessacuteandchronictoxicityfromradiotherapytreatment AT parrischristophern prolongedexpressionofthegh2axdnarepairbiomarkercorrelateswithexcessacuteandchronictoxicityfromradiotherapytreatment |