Cargando…
Genome-scale promoter engineering by Co-Selection MAGE
Multiplex Automated Genome Engineering (MAGE) employs short oligonucleotides to scarlessly modify genomes. However, insertions of >10 bases are still inefficient, but can be improved substantially by selection of highly modified chromosomes. Here, we describe Co-Selection MAGE (CoS-MAGE) to optim...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428217/ https://www.ncbi.nlm.nih.gov/pubmed/22484848 http://dx.doi.org/10.1038/nmeth.1971 |
Sumario: | Multiplex Automated Genome Engineering (MAGE) employs short oligonucleotides to scarlessly modify genomes. However, insertions of >10 bases are still inefficient, but can be improved substantially by selection of highly modified chromosomes. Here, we describe Co-Selection MAGE (CoS-MAGE) to optimize biosynthesis of aromatic amino acid derivatives by combinatorially inserting multiple T7 promoters simultaneously into 12 genomic operons. Promoter libraries can be quickly generated to study gain-of-function epistatic interactions in gene networks. |
---|