Cargando…

Murine corneal stroma cells inhibit LPS-induced dendritic cell maturation partially through TGF-β(2) secretion in vitro

PURPOSE: The peripheral cornea contains mature and immature resident dendritic cells (DCs) while the central cornea is exclusively equipped with immature DCs. There must be some factors that cause immature DCs. This study investigated whether corneal stroma cells (CSCs) inhibit DC maturation by secr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jian-Min, Song, Xiu-Jun, Wang, Hui-Fang, Li, Xiao-Lei, Zhang, Xiao-Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429355/
https://www.ncbi.nlm.nih.gov/pubmed/22933838
Descripción
Sumario:PURPOSE: The peripheral cornea contains mature and immature resident dendritic cells (DCs) while the central cornea is exclusively equipped with immature DCs. There must be some factors that cause immature DCs. This study investigated whether corneal stroma cells (CSCs) inhibit DC maturation by secreting cytokines. METHODS: The messenger ribonucleic acid (mRNA) and protein level of transforming growth factor beta 2 (TGF-β(2)) was analyzed using reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Immature DCs were induced to mature in the presence of lipopolysaccharide (LPS) and with concentrations of CSC culture supernatant (containing and not containing neutralizing TGF-β(2) antibodies). Then, the DC phenotypic and functional maturation were analyzed. RESULTS: CSCs exhibited positive expressions of TGF-β(2) mRNA and secreted high concentrations of TGF-β(2) protein. In the presence of LPS, DCs, which were treated with a CSC culture supernatant, displayed reduced expressions of cluster of differentiation 80 (CD80), CD86, and major histocompatibility complex II (MHC II) in a dose-dependent manner. Moreover, treated DCs showed lower T-cell stimulation capacity and a higher endocytosis function. However, these phenotypic and functional modifications were partially reversed after the application of neutralizing TGF-β(2) antibodies. CONCLUSIONS: This study demonstrates that CSCs can partially inhibit LPS-induced DC maturation through TGF-β(2) secretion in vitro.