Cargando…

Endosymbiotic and horizontal gene transfer in microbial eukaryotes: Impacts on cell evolution and the tree of life

The evolution of microbial eukaryotes, in particular of photosynthetic lineages, is complicated by multiple instances of endosymbiotic and horizontal gene transfer (E/HGT) resulting from plastid origin(s). Our recent analysis of diatom membrane transporters provides evidence of red and/or green alga...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Cheong Xin, Bhattacharya, Debashish, Reyes-Prieto, Adrian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429517/
https://www.ncbi.nlm.nih.gov/pubmed/22934244
http://dx.doi.org/10.4161/mge.20110
Descripción
Sumario:The evolution of microbial eukaryotes, in particular of photosynthetic lineages, is complicated by multiple instances of endosymbiotic and horizontal gene transfer (E/HGT) resulting from plastid origin(s). Our recent analysis of diatom membrane transporters provides evidence of red and/or green algal origins of 172 of the genes encoding these proteins (ca. 25% of the examined phylogenies), with the majority putatively derived from green algae. These data suggest that E/HGT has been an important driver of evolutionary innovation among diatoms (and likely other stramenopiles), and lend further support to the hypothesis of an ancient, cryptic green algal endosymbiosis in “chromalveolate” lineages. Here, we discuss the implications of our findings on the understanding of eukaryote evolution and inference of the tree of life.