Cargando…
A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies
A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neur...
Autores principales: | Li, Hong Zhi, Hu, Li Hong, Tao, Wei, Gao, Ting, Li, Hui, Lu, Ying Hua, Su, Zhong Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International
(MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430220/ https://www.ncbi.nlm.nih.gov/pubmed/22942689 http://dx.doi.org/10.3390/ijms13078051 |
Ejemplares similares
-
Improving the Accuracy of Density Functional Theory (DFT) Calculation for Homolysis Bond Dissociation Energies of Y-NO Bond: Generalized Regression Neural Network Based on Grey Relational Analysis and Principal Component Analysis
por: Li, Hong Zhi, et al.
Publicado: (2011) -
Electric fields drive bond homolysis
por: Zhang, Boyuan, et al.
Publicado: (2023) -
How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines
por: Audran, Gérard, et al.
Publicado: (2019) -
Direct observation of reversible bond homolysis by 2D EXSY NMR
por: Takebayashi, Satoshi, et al.
Publicado: (2022) -
NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines
por: Cherkasov, Sergey, et al.
Publicado: (2020)