Cargando…
HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction
Plants are constantly exposed to microbes, for this reason they have evolved sophisticated strategies to perceive and identify biotic interactions. Thus, plants have large collections of so-called resistance (R) proteins that recognize specific microbe factors as signals of invasion. One of these pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430286/ https://www.ncbi.nlm.nih.gov/pubmed/22942755 http://dx.doi.org/10.3390/ijms13079110 |
_version_ | 1782241929585491968 |
---|---|
author | Sáenz-Mata, Jorge Jiménez-Bremont, Juan Francisco |
author_facet | Sáenz-Mata, Jorge Jiménez-Bremont, Juan Francisco |
author_sort | Sáenz-Mata, Jorge |
collection | PubMed |
description | Plants are constantly exposed to microbes, for this reason they have evolved sophisticated strategies to perceive and identify biotic interactions. Thus, plants have large collections of so-called resistance (R) proteins that recognize specific microbe factors as signals of invasion. One of these proteins is codified by the Arabidopsis thaliana HR4 gene in the Col-0 ecotype that is homologous to RPW8 genes present in the Ms-0 ecotype. In this study, we investigated the expression patterns of the HR4 gene in Arabidopsis seedlings interacting with the beneficial fungus Trichoderma atroviride. We observed the induction of the HR4 gene mainly at 96 hpi when the fungus interaction was established. Furthermore, we found that the HR4 gene was differentially regulated in interactions with the beneficial bacterium Pseudomonas fluorescens and the pathogenic bacterium P. syringae. When hormone treatments were applied to A. thaliana (Col-0), each hormone treatment induced changes in HR4 gene expression. On the other hand, the expression of the RPW8.1 and RPW8.2 genes of Arabidopsis ecotype Ms-0 in interaction with T. atroviride was assessed. Interestingly, these genes are interaction-responsive; in particular, the RPW8.1 gene shows a very high level of expression in the later stages of interaction. These results indicate that HR4 and RPW8 genes could play a role in the establishment of Arabidopsis interactions with beneficial microbes. |
format | Online Article Text |
id | pubmed-3430286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-34302862012-08-31 HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction Sáenz-Mata, Jorge Jiménez-Bremont, Juan Francisco Int J Mol Sci Article Plants are constantly exposed to microbes, for this reason they have evolved sophisticated strategies to perceive and identify biotic interactions. Thus, plants have large collections of so-called resistance (R) proteins that recognize specific microbe factors as signals of invasion. One of these proteins is codified by the Arabidopsis thaliana HR4 gene in the Col-0 ecotype that is homologous to RPW8 genes present in the Ms-0 ecotype. In this study, we investigated the expression patterns of the HR4 gene in Arabidopsis seedlings interacting with the beneficial fungus Trichoderma atroviride. We observed the induction of the HR4 gene mainly at 96 hpi when the fungus interaction was established. Furthermore, we found that the HR4 gene was differentially regulated in interactions with the beneficial bacterium Pseudomonas fluorescens and the pathogenic bacterium P. syringae. When hormone treatments were applied to A. thaliana (Col-0), each hormone treatment induced changes in HR4 gene expression. On the other hand, the expression of the RPW8.1 and RPW8.2 genes of Arabidopsis ecotype Ms-0 in interaction with T. atroviride was assessed. Interestingly, these genes are interaction-responsive; in particular, the RPW8.1 gene shows a very high level of expression in the later stages of interaction. These results indicate that HR4 and RPW8 genes could play a role in the establishment of Arabidopsis interactions with beneficial microbes. Molecular Diversity Preservation International (MDPI) 2012-07-20 /pmc/articles/PMC3430286/ /pubmed/22942755 http://dx.doi.org/10.3390/ijms13079110 Text en © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Sáenz-Mata, Jorge Jiménez-Bremont, Juan Francisco HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title | HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title_full | HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title_fullStr | HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title_full_unstemmed | HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title_short | HR4 Gene Is Induced in the Arabidopsis-Trichoderma atroviride Beneficial Interaction |
title_sort | hr4 gene is induced in the arabidopsis-trichoderma atroviride beneficial interaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430286/ https://www.ncbi.nlm.nih.gov/pubmed/22942755 http://dx.doi.org/10.3390/ijms13079110 |
work_keys_str_mv | AT saenzmatajorge hr4geneisinducedinthearabidopsistrichodermaatroviridebeneficialinteraction AT jimenezbremontjuanfrancisco hr4geneisinducedinthearabidopsistrichodermaatroviridebeneficialinteraction |