Cargando…

Four-dimensional CT-based evaluation of volumetric modulated arc therapy for abdominal lymph node metastasis from hepatocellular carcinoma

This study aimed to identify the potential benefits and limitations of a new volumetric modulated arc therapy (VMAT) planning system in Monaco, compared with conventional intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Four-dimensional CT scans of 13 pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li, Xi, Mian, Deng, Xiao-Wu, Li, Qiao-Qiao, Huang, Xiao-Yan, Liu, Meng-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430422/
https://www.ncbi.nlm.nih.gov/pubmed/22843361
http://dx.doi.org/10.1093/jrr/rrs022
Descripción
Sumario:This study aimed to identify the potential benefits and limitations of a new volumetric modulated arc therapy (VMAT) planning system in Monaco, compared with conventional intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Four-dimensional CT scans of 13 patients with abdominal lymph node metastasis from hepatocellular carcinoma were selected. Internal target volume was defined as the combined volume of clinical target volumes (CTVs) in the multiple 4DCT phases. Dose prescription was set to 45 Gy for the planning target volume (PTV) in daily 3.0-Gy fractions. The PTV dose coverage, organs at risk (OAR) doses, delivery parameters and treatment accuracy were assessed. Compared with 3DCRT, both VMAT and IMRT provided a systematic improvement in PTV coverage and homogeneity. Planning objectives were not fulfilled for the right kidney, in which the 3DCRT plans exceeded the dose constraints in two patients. Equivalent target coverage and sparing of OARs were achieved with VMAT compared with IMRT. The number of MU/fraction was 462 ± 68 (3DCRT), 564 ± 105 (IMRT) and 601 ± 134 (VMAT), respectively. Effective treatment times were as follows: 1.8 ± 0.2 min (3DCRT), 6.1 ± 1.5 min (IMRT) and 4.8 ± 1.0 min (VMAT). This study suggests that the VMAT plans generated in Monaco improved delivery efficiency for equivalent dosimetric quality to IMRT, and were superior to 3DCRT in target coverage and sparing of most OARs. However, the superiority of VMAT over IMRT in delivery efficiency is limited.