Cargando…

CSF N-Glycan Profiles to Investigate Biomarkers in Brain Developmental Disorders: Application to Leukodystrophies Related to eIF2B Mutations

BACKGROUND: Primary or secondary abnormalities of glycosylation have been reported in various brain diseases. Decreased asialotransferrin to sialotransferrin ratio in cerebrospinal fluid (CSF) is a diagnostic marker of leukodystrophies related to mutations of genes encoding translation initiation fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Fogli, Anne, Merle, Christine, Roussel, Véronique, Schiffmann, Raphael, Ughetto, Sylvie, Theisen, Manfred, Boespflug-Tanguy, Odile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430715/
https://www.ncbi.nlm.nih.gov/pubmed/22952606
http://dx.doi.org/10.1371/journal.pone.0042688
Descripción
Sumario:BACKGROUND: Primary or secondary abnormalities of glycosylation have been reported in various brain diseases. Decreased asialotransferrin to sialotransferrin ratio in cerebrospinal fluid (CSF) is a diagnostic marker of leukodystrophies related to mutations of genes encoding translation initiation factor, EIF2B. We investigated the CSF glycome of eIF2B-mutated patients and age-matched normal individuals in order to further characterize the glycosylation defect for possible use as a biomarker. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a differential N-glycan analysis using MALDI-TOF/MS of permethylated N-glycans in CSF and plasma of controls and eIF2B-mutated patients. We found in control CSF that tri-antennary/bisecting and high mannose structures were highly represented in samples obtained between 1 to 5 years of age, whereas fucosylated, sialylated structures were predominant at later age. In CSF, but not in plasma, of eIF2B-mutated patient samples, we found increased relative intensity of bi-antennary structures and decreased tri-antennary/bisecting structures in N-glycan profiles. Four of these structures appeared to be biomarker candidates of glycomic profiles of eIF2B-related disorders. CONCLUSION: Our results suggest a dynamic development of normal CSF N-glycan profiles from high mannose type structures to complex sialylated structures that could be correlated with postnatal brain maturation. CSF N-glycome analysis shows relevant quantitative changes associated with eIF2B related disorders. This approach could be applied to other neurological disorders involving developmental gliogenesis/synaptogenesis abnormalities.