Cargando…
Weighted Frequent Gene Co-expression Network Mining to Identify Genes Involved in Genome Stability
Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining...
Autores principales: | Zhang, Jie, Lu, Kewei, Xiang, Yang, Islam, Muhtadi, Kotian, Shweta, Kais, Zeina, Lee, Cindy, Arora, Mansi, Liu, Hui-wen, Parvin, Jeffrey D., Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431293/ https://www.ncbi.nlm.nih.gov/pubmed/22956898 http://dx.doi.org/10.1371/journal.pcbi.1002656 |
Ejemplares similares
-
RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins
por: Arora, Mansi, et al.
Publicado: (2016) -
Overview of frequent pattern mining
por: Ott, Jurg, et al.
Publicado: (2022) -
Identify potential driver genes for PAX-FOXO1 fusion-negative rhabdomyosarcoma through frequent gene co-expression network mining
por: Zhan, Xiaohui, et al.
Publicado: (2023) -
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree
por: Mi, Xifeng
Publicado: (2022) -
Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes
por: Liu, Hui-wen, et al.
Publicado: (2012)