Cargando…

Nonlinear Dependencies of Biochemical Reactions for Context-specific Signaling Dynamics

Mathematical modeling can provide unique insights and predictions about a signaling pathway. Parameter variations allow identification of key reactions that govern signaling features such as the response time that may have a direct impact on the functional outcome. The effect of varying one paramete...

Descripción completa

Detalles Bibliográficos
Autores principales: Sung, Myong-Hee, Hager, Gordon L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431543/
https://www.ncbi.nlm.nih.gov/pubmed/22943002
http://dx.doi.org/10.1038/srep00616
Descripción
Sumario:Mathematical modeling can provide unique insights and predictions about a signaling pathway. Parameter variations allow identification of key reactions that govern signaling features such as the response time that may have a direct impact on the functional outcome. The effect of varying one parameter, however, may depend on values of another. To address the issue, we performed multi-parameter variations of an experimentally validated mathematical model of NF-κB regulatory network, and analyzed the inter-relationships of the parameters in shaping key dynamic features. We find that nonlinear dependencies are ubiquitous among parameters. Such phenomena may underlie the emergence of cell type-specific behaviors from essentially the same molecular network. Our results from a multivariate ensemble of models highlight the hypothesis that cell type specificity in signaling phenotype can arise from quantitatively altered strength of reactions in the pathway, in the absence of tissue-specific factors that re-wire the network for a new topology.