Cargando…
Effects of High Glucose on Vascular Endothelial Growth Factor Synthesis and Secretion in Aortic Vascular Smooth Muscle Cells from Obese and Lean Zucker Rats
Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel fo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431807/ https://www.ncbi.nlm.nih.gov/pubmed/22949809 http://dx.doi.org/10.3390/ijms13089478 |
Sumario: | Type 1 diabetes is characterized by insulin deficiency, type 2 by both insulin deficiency and insulin resistance: in both conditions, hyperglycaemia is accompanied by an increased cardiovascular risk, due to increased atherosclerotic plaque formation/instabilization and impaired collateral vessel formation. An important factor in these phenomena is the Vascular Endothelial Growth Factor (VEGF), a molecule produced also by Vascular Smooth Muscle Cells (VSMC). We aimed at evaluating the role of high glucose on VEGF-A(164) synthesis and secretion in VSMC from lean insulin-sensitive and obese insulin-resistant Zucker rats (LZR and OZR). In cultured aortic VSMC from LZR and OZR incubated for 24 h with d-glucose (5.5, 15 and 25 mM) or with the osmotic controls l-glucose and mannitol, we measured VEGF-A(164) synthesis (western, blotting) and secretion (western blotting and ELISA). We observed that: (i) d-glucose dose-dependently increases VEGF-A(164) synthesis and secretion in VSMC from LZR and OZR (n = 6, ANOVA p = 0.002–0.0001); (ii) all the effects of 15 and 25 mM d-glucose are attenuated in VSMC from OZR vs. LZR (p = 0.0001); (iii) l-glucose and mannitol reproduce the VEGF-A(164) modulation induced by d-glucose in VSMC from both LZR and OZR. Thus, glucose increases via an osmotic mechanism VEGF synthesis and secretion in VSMC, an effect attenuated in the presence of insulin resistance. |
---|