Cargando…
Molecular Tools for Exploring Polyploid Genomes in Plants
Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431861/ https://www.ncbi.nlm.nih.gov/pubmed/22949863 http://dx.doi.org/10.3390/ijms130810316 |
_version_ | 1782242118258917376 |
---|---|
author | Aversano, Riccardo Ercolano, Maria Raffaella Caruso, Immacolata Fasano, Carlo Rosellini, Daniele Carputo, Domenico |
author_facet | Aversano, Riccardo Ercolano, Maria Raffaella Caruso, Immacolata Fasano, Carlo Rosellini, Daniele Carputo, Domenico |
author_sort | Aversano, Riccardo |
collection | PubMed |
description | Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement. |
format | Online Article Text |
id | pubmed-3431861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-34318612012-09-04 Molecular Tools for Exploring Polyploid Genomes in Plants Aversano, Riccardo Ercolano, Maria Raffaella Caruso, Immacolata Fasano, Carlo Rosellini, Daniele Carputo, Domenico Int J Mol Sci Review Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement. Molecular Diversity Preservation International (MDPI) 2012-08-17 /pmc/articles/PMC3431861/ /pubmed/22949863 http://dx.doi.org/10.3390/ijms130810316 Text en © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Aversano, Riccardo Ercolano, Maria Raffaella Caruso, Immacolata Fasano, Carlo Rosellini, Daniele Carputo, Domenico Molecular Tools for Exploring Polyploid Genomes in Plants |
title | Molecular Tools for Exploring Polyploid Genomes in Plants |
title_full | Molecular Tools for Exploring Polyploid Genomes in Plants |
title_fullStr | Molecular Tools for Exploring Polyploid Genomes in Plants |
title_full_unstemmed | Molecular Tools for Exploring Polyploid Genomes in Plants |
title_short | Molecular Tools for Exploring Polyploid Genomes in Plants |
title_sort | molecular tools for exploring polyploid genomes in plants |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431861/ https://www.ncbi.nlm.nih.gov/pubmed/22949863 http://dx.doi.org/10.3390/ijms130810316 |
work_keys_str_mv | AT aversanoriccardo moleculartoolsforexploringpolyploidgenomesinplants AT ercolanomariaraffaella moleculartoolsforexploringpolyploidgenomesinplants AT carusoimmacolata moleculartoolsforexploringpolyploidgenomesinplants AT fasanocarlo moleculartoolsforexploringpolyploidgenomesinplants AT rosellinidaniele moleculartoolsforexploringpolyploidgenomesinplants AT carputodomenico moleculartoolsforexploringpolyploidgenomesinplants |