Cargando…
Natural material adsorbed onto a polymer to enhance immune function
BACKGROUND: In this study, we produced poly(ethylene glycol) (PEG) microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood. METHODS: The medicinal plant m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431968/ https://www.ncbi.nlm.nih.gov/pubmed/22956861 http://dx.doi.org/10.2147/DDDT.S34622 |
_version_ | 1782242138580320256 |
---|---|
author | Reinaque, Ana Paula Barcelos França, Eduardo Luzía Scherer, Edson Fredulin Côrtes, Mayra Aparecida Souto, Francisco José Dutra Honorio-França, Adenilda Cristina |
author_facet | Reinaque, Ana Paula Barcelos França, Eduardo Luzía Scherer, Edson Fredulin Côrtes, Mayra Aparecida Souto, Francisco José Dutra Honorio-França, Adenilda Cristina |
author_sort | Reinaque, Ana Paula Barcelos |
collection | PubMed |
description | BACKGROUND: In this study, we produced poly(ethylene glycol) (PEG) microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood. METHODS: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy. RESULTS: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture. CONCLUSION: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function. |
format | Online Article Text |
id | pubmed-3431968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34319682012-09-06 Natural material adsorbed onto a polymer to enhance immune function Reinaque, Ana Paula Barcelos França, Eduardo Luzía Scherer, Edson Fredulin Côrtes, Mayra Aparecida Souto, Francisco José Dutra Honorio-França, Adenilda Cristina Drug Des Devel Ther Original Research BACKGROUND: In this study, we produced poly(ethylene glycol) (PEG) microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood. METHODS: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy. RESULTS: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture. CONCLUSION: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function. Dove Medical Press 2012-08-27 /pmc/articles/PMC3431968/ /pubmed/22956861 http://dx.doi.org/10.2147/DDDT.S34622 Text en © 2012 Reinaque et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Reinaque, Ana Paula Barcelos França, Eduardo Luzía Scherer, Edson Fredulin Côrtes, Mayra Aparecida Souto, Francisco José Dutra Honorio-França, Adenilda Cristina Natural material adsorbed onto a polymer to enhance immune function |
title | Natural material adsorbed onto a polymer to enhance immune function |
title_full | Natural material adsorbed onto a polymer to enhance immune function |
title_fullStr | Natural material adsorbed onto a polymer to enhance immune function |
title_full_unstemmed | Natural material adsorbed onto a polymer to enhance immune function |
title_short | Natural material adsorbed onto a polymer to enhance immune function |
title_sort | natural material adsorbed onto a polymer to enhance immune function |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431968/ https://www.ncbi.nlm.nih.gov/pubmed/22956861 http://dx.doi.org/10.2147/DDDT.S34622 |
work_keys_str_mv | AT reinaqueanapaulabarcelos naturalmaterialadsorbedontoapolymertoenhanceimmunefunction AT francaeduardoluzia naturalmaterialadsorbedontoapolymertoenhanceimmunefunction AT schereredsonfredulin naturalmaterialadsorbedontoapolymertoenhanceimmunefunction AT cortesmayraaparecida naturalmaterialadsorbedontoapolymertoenhanceimmunefunction AT soutofranciscojosedutra naturalmaterialadsorbedontoapolymertoenhanceimmunefunction AT honoriofrancaadenildacristina naturalmaterialadsorbedontoapolymertoenhanceimmunefunction |