Cargando…

Multimode circuit optomechanics near the quantum limit

The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the bene...

Descripción completa

Detalles Bibliográficos
Autores principales: Massel, Francesco, Cho, Sung Un, Pirkkalainen, Juha-Matti, Hakonen, Pertti J., Heikkilä, Tero T., Sillanpää, Mika A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432470/
https://www.ncbi.nlm.nih.gov/pubmed/22871806
http://dx.doi.org/10.1038/ncomms1993
_version_ 1782242211093544960
author Massel, Francesco
Cho, Sung Un
Pirkkalainen, Juha-Matti
Hakonen, Pertti J.
Heikkilä, Tero T.
Sillanpää, Mika A.
author_facet Massel, Francesco
Cho, Sung Un
Pirkkalainen, Juha-Matti
Hakonen, Pertti J.
Heikkilä, Tero T.
Sillanpää, Mika A.
author_sort Massel, Francesco
collection PubMed
description The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.
format Online
Article
Text
id pubmed-3432470
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-34324702012-09-05 Multimode circuit optomechanics near the quantum limit Massel, Francesco Cho, Sung Un Pirkkalainen, Juha-Matti Hakonen, Pertti J. Heikkilä, Tero T. Sillanpää, Mika A. Nat Commun Article The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states. Nature Pub. Group 2012-08-07 /pmc/articles/PMC3432470/ /pubmed/22871806 http://dx.doi.org/10.1038/ncomms1993 Text en Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Massel, Francesco
Cho, Sung Un
Pirkkalainen, Juha-Matti
Hakonen, Pertti J.
Heikkilä, Tero T.
Sillanpää, Mika A.
Multimode circuit optomechanics near the quantum limit
title Multimode circuit optomechanics near the quantum limit
title_full Multimode circuit optomechanics near the quantum limit
title_fullStr Multimode circuit optomechanics near the quantum limit
title_full_unstemmed Multimode circuit optomechanics near the quantum limit
title_short Multimode circuit optomechanics near the quantum limit
title_sort multimode circuit optomechanics near the quantum limit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432470/
https://www.ncbi.nlm.nih.gov/pubmed/22871806
http://dx.doi.org/10.1038/ncomms1993
work_keys_str_mv AT masselfrancesco multimodecircuitoptomechanicsnearthequantumlimit
AT chosungun multimodecircuitoptomechanicsnearthequantumlimit
AT pirkkalainenjuhamatti multimodecircuitoptomechanicsnearthequantumlimit
AT hakonenperttij multimodecircuitoptomechanicsnearthequantumlimit
AT heikkilaterot multimodecircuitoptomechanicsnearthequantumlimit
AT sillanpaamikaa multimodecircuitoptomechanicsnearthequantumlimit